Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Mol Cell Proteomics ; 22(8): 100592, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37328065

RESUMO

The need for a clinically accessible method with the ability to match protein activity within heterogeneous tissues is currently unmet by existing technologies. Our proteomics sample preparation platform, named microPOTS (Microdroplet Processing in One pot for Trace Samples), can be used to measure relative protein abundance in micron-scale samples alongside the spatial location of each measurement, thereby tying biologically interesting proteins and pathways to distinct regions. However, given the smaller pixel/voxel number and amount of tissue measured, standard mass spectrometric analysis pipelines have proven inadequate. Here we describe how existing computational approaches can be adapted to focus on the specific biological questions asked in spatial proteomics experiments. We apply this approach to present an unbiased characterization of the human islet microenvironment comprising the entire complex array of cell types involved while maintaining spatial information and the degree of the islet's sphere of influence. We identify specific functional activity unique to the pancreatic islet cells and demonstrate how far their signature can be detected in the adjacent tissue. Our results show that we can distinguish pancreatic islet cells from the neighboring exocrine tissue environment, recapitulate known biological functions of islet cells, and identify a spatial gradient in the expression of RNA processing proteins within the islet microenvironment.


Assuntos
Ilhotas Pancreáticas , Proteoma , Humanos , Proteoma/metabolismo , Ilhotas Pancreáticas/metabolismo , Espectrometria de Massas
2.
Anal Chem ; 95(23): 8747-8751, 2023 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-37235478

RESUMO

Proteoforms expand genomic diversity and direct developmental processes. While high-resolution mass spectrometry has accelerated characterization of proteoforms, molecular techniques working to bind and disrupt the function of specific proteoforms have lagged behind. In this study, we worked to develop intrabodies capable of binding specific proteoforms. We employed a synthetic camelid nanobody library expressed in yeast to identify nanobody binders of different SARS-CoV-2 receptor binding domain (RBD) proteoforms. Importantly, employment of the positive and negative selection mechanisms inherent to the synthetic system allowed for amplification of nanobody-expressing yeast that bind to the original (Wuhan strain RBD) but not the E484 K (Beta variant) mutation. Nanobodies raised against specific RBD proteoforms were validated by yeast-2-hybrid analysis and sequence comparisons. These results provide a framework for development of nanobodies and intrabodies that target proteoforms.


Assuntos
COVID-19 , Anticorpos de Domínio Único , Humanos , Anticorpos de Domínio Único/metabolismo , SARS-CoV-2/metabolismo , Saccharomyces cerevisiae/metabolismo
3.
Am J Respir Crit Care Med ; 205(2): 208-218, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-34752721

RESUMO

Rationale: The current understanding of human lung development derives mostly from animal studies. Although transcript-level studies have analyzed human donor tissue to identify genes expressed during normal human lung development, protein-level analysis that would enable the generation of new hypotheses on the processes involved in pulmonary development are lacking. Objectives: To define the temporal dynamic of protein expression during human lung development. Methods: We performed proteomics analysis of human lungs at 10 distinct times from birth to 8 years to identify the molecular networks mediating postnatal lung maturation. Measurements and Main Results: We identified 8,938 proteins providing a comprehensive view of the developing human lung proteome. The analysis of the data supports the existence of distinct molecular substages of alveolar development and predicted the age of independent human lung samples, and extensive remodeling of the lung proteome occurred during postnatal development. Evidence of post-transcriptional control was identified in early postnatal development. An extensive extracellular matrix remodeling was supported by changes in the proteome during alveologenesis. The concept of maturation of the immune system as an inherent part of normal lung development was substantiated by flow cytometry and transcriptomics. Conclusions: This study provides the first in-depth characterization of the human lung proteome during development, providing a unique proteomic resource freely accessible at Lungmap.net. The data support the extensive remodeling of the lung proteome during development, the existence of molecular substages of alveologenesis, and evidence of post-transcriptional control in early postnatal development.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Pulmão/crescimento & desenvolvimento , Pulmão/metabolismo , Proteínas/genética , Proteínas/metabolismo , Alvéolos Pulmonares/crescimento & desenvolvimento , Alvéolos Pulmonares/metabolismo , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Proteômica
4.
J Proteome Res ; 20(4): 2116-2121, 2021 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-33703901

RESUMO

A generalized goal of many high-throughput data studies is to identify functional mechanisms that underlie observed biological phenomena, whether they be disease outcomes or metabolic output. Increasingly, studies that rely on multiple sources of high-throughput data (genomic, transcriptomic, proteomic, metabolomic) are faced with a challenge of summarizing the data to generate testable hypotheses. However, this requires a time-consuming process to evaluate numerous statistical methods across numerous data sources. Here, we introduce the leapR package, a framework to rapidly assess biological pathway activity using diverse statistical tests and data sources, allowing facile integration of multisource data. The leapR package with a user manual and example workflow is available for download from GitHub (https://github.com/biodataganache/leapR).


Assuntos
Proteômica , Software , Biologia Computacional , Genômica , Metabolômica
5.
Mol Cell Proteomics ; 18(8 suppl 1): S26-S36, 2019 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-31227600

RESUMO

Phosphorylation of proteins is a key way cells regulate function, both at the individual protein level and at the level of signaling pathways. Kinases are responsible for phosphorylation of substrates, generally on serine, threonine, or tyrosine residues. Though particular sequence patterns can be identified that dictate whether a residue will be phosphorylated by a specific kinase, these patterns are not highly predictive of phosphorylation. The availability of large scale proteomic and phosphoproteomic data sets generated using mass-spectrometry-based approaches provides an opportunity to study the important relationship between kinase activity, substrate specificity, and phosphorylation. In this study, we analyze relationships between protein abundance and phosphopeptide abundance across more than 150 tumor samples and show that phosphorylation at specific phosphosites is not well correlated with overall kinase abundance. However, individual kinases show a clear and statistically significant difference in correlation among known phosphosite targets for that kinase and randomly selected phosphosites. We further investigate relationships between phosphorylation of known activating or inhibitory sites on kinases and phosphorylation of their target phosphosites. Combined with motif-based analysis, this approach can predict novel kinase targets and show which subsets of a kinase's target repertoire are specifically active in one condition versus another.


Assuntos
Fosfoproteínas/metabolismo , Proteínas Quinases/metabolismo , Humanos , Neoplasias/metabolismo , Fosforilação , Proteômica
6.
mSystems ; 7(6): e0058222, 2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36453933

RESUMO

Arctic permafrost is thawing due to global warming, with unknown consequences on the microbial inhabitants or associated viruses. DNA viruses have previously been shown to be abundant and active in thawing permafrost, but little is known about RNA viruses in these systems. To address this knowledge gap, we assessed the composition of RNA viruses in thawed permafrost samples that were incubated for 97 days at 4°C to simulate thaw conditions. A diverse RNA viral community was assembled from metatranscriptome data including double-stranded RNA viruses, dominated by Reoviridae and Hypoviridae, and negative and positive single-stranded RNA viruses, with relatively high representations of Rhabdoviridae and Leviviridae, respectively. Sequences corresponding to potential plant and human pathogens were also detected. The detected RNA viruses primarily targeted dominant eukaryotic taxa in the samples (e.g., fungi, Metazoa and Viridiplantae) and the viral community structures were significantly associated with predicted host populations. These results indicate that RNA viruses are linked to eukaryotic host dynamics. Several of the RNA viral sequences contained auxiliary metabolic genes encoding proteins involved in carbon utilization (e.g., polygalacturosase), implying their potential roles in carbon cycling in thawed permafrost. IMPORTANCE Permafrost is thawing at a rapid pace in the Arctic with largely unknown consequences on ecological processes that are fundamental to Arctic ecosystems. This is the first study to determine the composition of RNA viruses in thawed permafrost. Other recent studies have characterized DNA viruses in thawing permafrost, but the majority of DNA viruses are bacteriophages that target bacterial hosts. By contrast RNA viruses primarily target eukaryotic hosts and thus represent potential pathogenic threats to humans, animals, and plants. Here, we find that RNA viruses in permafrost are novel and distinct from those in other habitats studied to date. The COVID-19 pandemic has heightened awareness of the importance of potential environmental reservoirs of emerging RNA viral pathogens. We demonstrate that some potential pathogens were detected after an experimental thawing regime. These results are important for understanding critical viral-host interactions and provide a better understanding of the ecological roles that RNA viruses play as permafrost thaws.


Assuntos
COVID-19 , Pergelissolo , Vírus de RNA , Humanos , Pergelissolo/química , Solo/química , Ecossistema , Eucariotos/metabolismo , Pandemias , Vírus de RNA/genética , Plantas/metabolismo , Carbono/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA