Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Cell ; 184(1): 92-105.e16, 2021 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33147445

RESUMO

To better understand host-virus genetic dependencies and find potential therapeutic targets for COVID-19, we performed a genome-scale CRISPR loss-of-function screen to identify host factors required for SARS-CoV-2 viral infection of human alveolar epithelial cells. Top-ranked genes cluster into distinct pathways, including the vacuolar ATPase proton pump, Retromer, and Commander complexes. We validate these gene targets using several orthogonal methods such as CRISPR knockout, RNA interference knockdown, and small-molecule inhibitors. Using single-cell RNA-sequencing, we identify shared transcriptional changes in cholesterol biosynthesis upon loss of top-ranked genes. In addition, given the key role of the ACE2 receptor in the early stages of viral entry, we show that loss of RAB7A reduces viral entry by sequestering the ACE2 receptor inside cells. Overall, this work provides a genome-scale, quantitative resource of the impact of the loss of each host gene on fitness/response to viral infection.


Assuntos
COVID-19/genética , COVID-19/virologia , Interações Hospedeiro-Patógeno , SARS-CoV-2/fisiologia , Células A549 , Células Epiteliais Alveolares/metabolismo , Células Epiteliais Alveolares/virologia , Enzima de Conversão de Angiotensina 2/metabolismo , Vias Biossintéticas , COVID-19/metabolismo , Colesterol/biossíntese , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Endossomos/metabolismo , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes/métodos , Estudo de Associação Genômica Ampla , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Humanos , Interferência de RNA , SARS-CoV-2/crescimento & desenvolvimento , Análise de Célula Única , Carga Viral/efeitos dos fármacos , Proteínas rab de Ligação ao GTP/genética , proteínas de unión al GTP Rab7
2.
PLoS Pathog ; 18(4): e1010464, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35421191

RESUMO

Interferons establish an antiviral state through the induction of hundreds of interferon-stimulated genes (ISGs). The mechanisms and viral specificities for most ISGs remain incompletely understood. To enable high-throughput interrogation of ISG antiviral functions in pooled genetic screens while mitigating potentially confounding effects of endogenous interferon and antiproliferative/proapoptotic ISG activities, we adapted a CRISPR-activation (CRISPRa) system for inducible ISG expression in isogenic cell lines with and without the capacity to respond to interferons. We used this platform to screen for ISGs that restrict SARS-CoV-2. Results included ISGs previously described to restrict SARS-CoV-2 and novel candidate antiviral factors. We validated a subset of these by complementary CRISPRa and cDNA expression experiments. OAS1, a top-ranked hit across multiple screens, exhibited strong antiviral effects against SARS-CoV-2, which required OAS1 catalytic activity. These studies demonstrate a high-throughput approach to assess antiviral functions within the ISG repertoire, exemplified by identification of multiple SARS-CoV-2 restriction factors.


Assuntos
2',5'-Oligoadenilato Sintetase , COVID-19 , Interferons , 2',5'-Oligoadenilato Sintetase/genética , 2',5'-Oligoadenilato Sintetase/metabolismo , Antivirais/farmacologia , COVID-19/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Humanos , Interferons/metabolismo , SARS-CoV-2/genética
3.
Proc Natl Acad Sci U S A ; 117(45): 28344-28354, 2020 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-33097660

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the causative agent of the ongoing coronavirus disease 2019 (COVID-19) pandemic that is a serious global health problem. Evasion of IFN-mediated antiviral signaling is a common defense strategy that pathogenic viruses use to replicate and propagate in their host. In this study, we show that SARS-CoV-2 is able to efficiently block STAT1 and STAT2 nuclear translocation in order to impair transcriptional induction of IFN-stimulated genes (ISGs). Our results demonstrate that the viral accessory protein Orf6 exerts this anti-IFN activity. We found that SARS-CoV-2 Orf6 localizes at the nuclear pore complex (NPC) and directly interacts with Nup98-Rae1 via its C-terminal domain to impair docking of cargo-receptor (karyopherin/importin) complex and disrupt nuclear import. In addition, we show that a methionine-to-arginine substitution at residue 58 impairs Orf6 binding to the Nup98-Rae1 complex and abolishes its IFN antagonistic function. All together our data unravel a mechanism of viral antagonism in which a virus hijacks the Nup98-Rae1 complex to overcome the antiviral action of IFN.


Assuntos
COVID-19/metabolismo , Interferons/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Poro Nuclear/metabolismo , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT2/metabolismo , Proteínas Virais/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Sítios de Ligação , Chlorocebus aethiops , Células HEK293 , Humanos , Proteínas Associadas à Matriz Nuclear/química , Proteínas Associadas à Matriz Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático/química , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Ligação Proteica , Transdução de Sinais , Células Vero
4.
Eur J Immunol ; 47(4): 692-703, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28191644

RESUMO

Natural killer (NK) cells are capable of killing various pathogens upon stimulation of activating receptors. Human metapneumovirus (HMPV) is a respiratory virus, which was discovered in 2001 and is responsible for acute respiratory tract infection in infants and children worldwide. HMPV infection is very common, infecting around 70% of all children under the age of five. Under immune suppressive conditions, HMPV infection can be fatal. Not much is known on how NK cells respond to HMPV. In this study, using reporter assays and NK-cell cytotoxicity assays performed with human and mouse NK cells, we demonstrated that the NKp46-activating receptor and its mouse orthologue Ncr1, both members of the natural cytotoxicity receptor (NCR) family, recognized an unknown ligand expressed by HMPV-infected human cells. We demonstrated that MHC class I is upregulated and MICA is downregulated upon HMPV infection. We also characterized mouse NK-cell phenotype in the blood and the lungs of HMPV-infected mice and found that lung NK cells are more activated and expressing NKG2D, CD43, CD27, KLRG1, and CD69 compared to blood NK cells regardless of HMPV infection. Finally, we demonstrated, using Ncr1-deficient mice, that NCR1 plays a critical role in controlling HMPV infection.


Assuntos
Antígenos Ly/metabolismo , Células Matadoras Naturais/imunologia , Pulmão/imunologia , Metapneumovirus/imunologia , Receptor 1 Desencadeador da Citotoxicidade Natural/metabolismo , Infecções por Paramyxoviridae/imunologia , Animais , Antígenos Ly/genética , Criança , Citotoxicidade Imunológica , Células HEK293 , Humanos , Lactente , Células Matadoras Naturais/virologia , Ativação Linfocitária , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Receptor 1 Desencadeador da Citotoxicidade Natural/genética , Carga Viral
5.
Cell Mol Life Sci ; 74(14): 2645-2662, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28357470

RESUMO

The Type-I bone morphogenetic protein receptors (BMPRs), BMPR1A and BMPR1B, present the highest sequence homology among BMPRs, suggestive of functional similitude. However, sequence elements within their extracellular domain, such as signal sequence or N-glycosylation motifs, may result in differential regulation of biosynthetic processing and trafficking and in alterations to receptor function. We show that (i) BMPR1A and the ubiquitous isoform of BMPR1B differed in mode of translocation into the endoplasmic reticulum; and (ii) BMPR1A was N-glycosylated while BMPR1B was not, resulting in greater efficiency of processing and plasma membrane expression of BMPR1A. We further demonstrated the importance of BMPR1A expression and glycosylation in ES-2 ovarian cancer cells, where (i) CRISPR/Cas9-mediated knockout of BMPR1A abrogated BMP2-induced Smad1/5/8 phosphorylation and reduced proliferation of ES-2 cells and (ii) inhibition of N-glycosylation by site-directed mutagenesis, or by tunicamycin or 2-deoxy-D-glucose treatments, reduced biosynthetic processing and plasma membrane expression of BMPR1A and BMP2-induced Smad1/5/8 phosphorylation.


Assuntos
Receptores de Proteínas Morfogenéticas Ósseas Tipo I/metabolismo , Membrana Celular/metabolismo , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Citoesqueleto de Actina/efeitos dos fármacos , Citoesqueleto de Actina/metabolismo , Animais , Proteína Morfogenética Óssea 2/farmacologia , Sistemas CRISPR-Cas , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Técnicas de Inativação de Genes , Glicosilação/efeitos dos fármacos , Humanos , Invasividade Neoplásica , Dobramento de Proteína/efeitos dos fármacos , Processamento de Proteína Pós-Traducional/efeitos dos fármacos , Transporte Proteico/efeitos dos fármacos , Pirazóis/farmacologia , Pirimidinas/farmacologia , Transdução de Sinais/efeitos dos fármacos
6.
bioRxiv ; 2023 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-34845443

RESUMO

Single cell RNA sequencing (scRNA-Seq) studies have provided critical insight into the pathogenesis of Severe Acute Respiratory Syndrome CoronaVirus 2 (SARS-CoV-2), the causative agent of COronaVIrus Disease 2019 (COVID-19). scRNA-Seq workflows are generally designed for the detection and quantification of eukaryotic host mRNAs and not viral RNAs. Here, we compare different scRNA-Seq methods for their ability to quantify and detect SARS-CoV-2 RNAs with a focus on subgenomic mRNAs (sgmRNAs). We present a data processing strategy, single cell CoronaVirus sequencing (scCoVseq), which quantifies reads unambiguously assigned to sgmRNAs or genomic RNA (gRNA). Compared to standard 10X Genomics Chromium Next GEM Single Cell 3' (10X 3') and Chromium Next GEM Single Cell V(D)J (10X 5') sequencing, we find that 10X 5' with an extended read 1 (R1) sequencing strategy maximizes the detection of sgmRNAs by increasing the number of unambiguous reads spanning leader-sgmRNA junction sites. Using this method, we show that viral gene expression is highly correlated across cells suggesting a relatively consistent proportion of viral sgmRNA production throughout infection. Our method allows for quantification of coronavirus sgmRNA expression at single-cell resolution, and thereby supports high resolution studies of the dynamics of coronavirus RNA synthesis.

7.
Microbiol Spectr ; : e0077623, 2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37676044

RESUMO

Single-cell RNA sequencing (scRNA-Seq) studies have provided critical insight into the pathogenesis of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of coronavirus disease 2019 (COVID-19). scRNA-Seq library preparation methods and data processing workflows are generally designed for the detection and quantification of eukaryotic host mRNAs and not viral RNAs. Here, we compare different scRNA-Seq library preparation methods for their ability to quantify and detect SARS-CoV-2 RNAs with a focus on subgenomic mRNAs (sgmRNAs). We show that compared to 10X Genomics Chromium Next GEM Single Cell 3' (10X 3') libraries or 10X Genomics Chromium Next GEM Single Cell V(D)J (10X 5') libraries sequenced with standard read configurations, 10X 5' libraries sequenced with an extended length read 1 (R1) that covers both cell barcode and transcript sequence (termed "10X 5' with extended R1") increase the number of unambiguous reads spanning leader-sgmRNA junction sites. We further present a data processing workflow, single-cell coronavirus sequencing (scCoVseq), which quantifies reads unambiguously assigned to viral sgmRNAs or viral genomic RNA (gRNA). We find that combining 10X 5' with extended R1 library preparation/sequencing and scCoVseq data processing maximizes the number of viral UMIs per cell quantified by scRNA-Seq. Corresponding sgmRNA expression levels are highly correlated with expression in matched bulk RNA-Seq data sets quantified with established tools for SARS-CoV-2 analysis. Using this scRNA-Seq approach, we find that SARS-CoV-2 gene expression is highly correlated across individual infected cells, which suggests that the proportion of viral sgmRNAs remains generally consistent throughout infection. Taken together, these results and corresponding data processing workflow enable robust quantification of coronavirus sgmRNA expression at single-cell resolution, thereby supporting high-resolution studies of viral RNA processes in individual cells. IMPORTANCE Single-cell RNA sequencing (scRNA-Seq) has emerged as a valuable tool to study host-virus interactions, especially for coronavirus disease 2019 (COVID-19). Here we compare the performance of different scRNA-Seq library preparation methods and sequencing strategies to detect SARS-CoV-2 RNAs and develop a data processing workflow to quantify unambiguous sequence reads derived from SARS-CoV-2 genomic RNA and subgenomic mRNAs. After establishing a workflow that maximizes the detection of SARS-CoV-2 subgenomic mRNAs, we explore patterns of SARS-CoV-2 gene expression across cells with variable levels of total viral RNA, assess host gene expression differences between infected and bystander cells, and identify non-canonical and lowly abundant SARS-CoV-2 RNAs. The sequencing and data processing strategies developed here can enhance studies of coronavirus RNA biology at single-cell resolution and thereby contribute to our understanding of viral pathogenesis.

8.
mBio ; 14(4): e0100723, 2023 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-37345956

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the coronavirus disease 2019 (COVID-19) pandemic, drastically modifies infected cells to optimize virus replication. One such modification is the activation of the host p38 mitogen-activated protein kinase (MAPK) pathway, which plays a major role in inflammatory cytokine production, a hallmark of severe COVID-19. We previously demonstrated that inhibition of p38/MAPK activity in SARS-CoV-2-infected cells reduced both cytokine production and viral replication. Here, we combined quantitative genetic screening, genomics, proteomics, and phosphoproteomics to better understand mechanisms underlying the dependence of SARS-CoV-2 on the p38 pathway. We found that p38ß is a critical host factor for SARS-CoV-2 replication in multiple relevant cell lines and that it functions at a step after viral mRNA expression. We identified putative host and viral p38ß substrates in the context of SARS-CoV-2 infection and found that most host substrates have intrinsic antiviral activities. Taken together, this study reveals a unique proviral function for p38ß and supports exploring p38ß inhibitor development as a strategy toward creating a new class of COVID-19 therapies. IMPORTANCE SARS-CoV-2 is the causative agent of the COVID-19 pandemic that has claimed millions of lives since its emergence in 2019. SARS-CoV-2 infection of human cells requires the activity of several cellular pathways for successful replication. One such pathway, the p38 MAPK pathway, is required for virus replication and disease pathogenesis. Here, we applied systems biology approaches to understand how MAPK pathways benefit SARS-CoV-2 replication to inform the development of novel COVID-19 drug therapies.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Citocinas , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Pandemias , SARS-CoV-2/metabolismo , Replicação Viral , Proteína Quinase 11 Ativada por Mitógeno/metabolismo
9.
Front Immunol ; 9: 94, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29441069

RESUMO

Malignancy-induced alterations to cytokine signaling in tumor cells differentially regulate their interactions with the immune system and oncolytic viruses. The abundance of inflammatory cytokines in the tumor microenvironment suggests that such signaling plays key roles in tumor development and therapy efficacy. The JAK-STAT axis transduces signals of interleukin-6 (IL-6) and interferons (IFNs), mediates antiviral responses, and is frequently altered in prostate cancer (PCa) cells. However, how activation of JAK-STAT signaling with different cytokines regulates interactions between oncolytic viruses and PCa cells is not known. Here, we employ LNCaP PCa cells, expressing (or not) JAK1, activated (or not) with IFNs (α or γ) or IL-6, and infected with RNA viruses of different oncolytic potential (EHDV-TAU, hMPV-GFP, or HIV-GFP) to address this matter. We show that in JAK1-expressing cells, IL-6 sensitized PCa cells to viral cell death in the presence or absence of productive infection, with dependence on virus employed. Contrastingly, IFNα induced a cytoprotective antiviral state. Biochemical and genetic (knockout) analyses revealed dependency of antiviral state or cytoprotection on STAT1 or STAT2 activation, respectively. In IL-6-treated cells, STAT3 expression was required for anti-proliferative signaling. Quantitative proteomics (SILAC) revealed a core repertoire of antiviral IFN-stimulated genes, induced by IL-6 or IFNs. Oncolysis in the absence of productive infection, induced by IL-6, correlated with reduction in regulators of cell cycle and metabolism. These results call for matching the viral features of the oncolytic agent, the malignancy-induced genetic-epigenetic alterations to JAK/STAT signaling and the cytokine composition of the tumor microenvironment for efficient oncolytic virotherapy.


Assuntos
Interações Hospedeiro-Patógeno , Interferon-alfa/metabolismo , Interleucina-6/metabolismo , Janus Quinase 1/metabolismo , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais , Viroses/metabolismo , Viroses/virologia , Animais , Antivirais/farmacologia , Biomarcadores , Linhagem Celular , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Interferon-alfa/farmacologia , Masculino , Vírus Oncolíticos/efeitos dos fármacos , Vírus Oncolíticos/fisiologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Proteoma , Fatores de Transcrição STAT/genética , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Viroses/imunologia
10.
Protein Sci ; 15(6): 1270-6, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16672234

RESUMO

The ATPase activity of many types of molecular chaperones is stimulated by polypeptide substrate binding via molecular mechanisms that are, for the most part, unknown. Here, we report that such stimulation of the ATPase activity of GroEL is abolished when its conserved apical domain residue Glu257 is replaced by alanine. This mutation is also found to convert the ATPase profile of GroEL, a group I chaperonin, into one that is characteristic of group II chaperonins. Steady-state and transient kinetic analysis indicate that both effects are due, at least in part, to a reduction of the affinity of GroEL for ADP. This finding indicates that nonfolded proteins stimulate ATP hydrolysis by accelerating the off-rate of the ADP formed, thereby allowing more rapid cycles of ATP binding and hydrolysis.


Assuntos
Trifosfato de Adenosina/metabolismo , Chaperonina 60/metabolismo , Ácido Glutâmico/metabolismo , Peptídeos/metabolismo , Difosfato de Adenosina/metabolismo , Adenosina Trifosfatases/metabolismo , Alanina/metabolismo , Substituição de Aminoácidos , Sítios de Ligação , Chaperonina 60/química , Chaperonina 60/genética , Hidrólise , Cinética , Lactalbumina/metabolismo , Mutação , Estrutura Terciária de Proteína , Especificidade por Substrato
11.
Oncotarget ; 7(32): 52115-52134, 2016 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-27366948

RESUMO

Interferons (IFNs) induce anti-viral programs, regulate immune responses, and exert anti-proliferative effects. To escape anti-tumorigenic effects of IFNs, malignant cells attenuate JAK/STAT signaling and expression of IFN stimulated genes (ISGs). Such attenuation may enhance the susceptibility of tumor cells to oncolytic virotherapy. Here we studied genetic and epigenetic mechanisms of interference with JAK/STAT signaling and their contribution to susceptibility of prostate cancer cells to viral infection. Bioinformatics analysis of gene-expression in cohorts of prostate cancer patients revealed genetic and epigenetic interference with the IFN program. To correlate lack of IFN signaling and susceptibility to viral infection and oncolysis; we employed LNCaP prostate cancer cells as cellular model, and the human metapneumovirus and the epizootic hemorrhagic disease virus as infectious agents. In LNCaP cells, JAK1 is silenced by bi-allelic inactivating mutations and epigenetic silencing, which also silences ISGs. Chemical inhibition of epigenetic silencing partially restored IFN-sensitivity, induced low levels of expression of selected ISGs and attenuated, but failed to block, viral infection and oncolysis. Since viral infection was not blocked by epigenetic modifiers, and these compounds may independently-induce anti-tumor effects, we propose that epigenetic modifiers and virotherapy are compatible in treatment of prostate tumors defective in JAK1 expression and IFN signaling.


Assuntos
Regulação Neoplásica da Expressão Gênica/genética , Interferons/metabolismo , Terapia Viral Oncolítica , Neoplasias da Próstata/genética , Transdução de Sinais/fisiologia , Linhagem Celular Tumoral , Epigênese Genética , Humanos , Janus Quinase 1/metabolismo , Masculino
12.
Oncotarget ; 7(41): 66468-66479, 2016 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-27634893

RESUMO

The innate sensing system is equipped with PRRs specialized in recognizing molecular structures (PAMPs) of various pathogens. This leads to the induction of anti-viral genes and inhibition of virus growth. Human Metapneumovirus (HMPV) is a major respiratory virus that causes an upper and lower respiratory tract infection in children. In this study we show that upon HMPV infection, the innate sensing system detects the viral RNA through the RIG-I sensor leading to induction of CEACAM1 expression. We further show that CEACAM1 is induced via binding of IRF3 to the CEACAM1 promoter. We demonstrate that induction of CEACAM1 suppresses the viral loads via inhibition of the translation machinery in the infected cells in an SHP2-dependent manner. In summary, we show here that HMPV-infected cells upregulates CEACAM1 to restrict HMPV infection.


Assuntos
Antígenos CD/imunologia , Moléculas de Adesão Celular/imunologia , Imunidade Inata/imunologia , Infecções por Paramyxoviridae/imunologia , Animais , Antígenos CD/biossíntese , Moléculas de Adesão Celular/biossíntese , Chlorocebus aethiops , Humanos , Metapneumovirus/imunologia , Infecções por Paramyxoviridae/metabolismo , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/virologia , Infecções Respiratórias/imunologia , Infecções Respiratórias/metabolismo , Infecções Respiratórias/virologia , Regulação para Cima , Células Vero
13.
Biochemistry ; 41(18): 5938-44, 2002 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-11980498

RESUMO

A kinetic analysis of the ATP-dependent dissociation of wild-type GroEL and mutants from immobilized GroES was carried out using surface plasmon resonance. Excellent fits of the data were obtained using a double-exponential equation with a linear drift. Both the fast and slow observed dissociation rate constants are found to have a sigmoidal dependence on the concentration of ATP. The values of the Hill coefficients corresponding to the fast and slow observed rate constants of dissociation of wild-type GroEL and the Arg197-->Ala mutant are in good agreement with the respective values of the Hill coefficients previously determined for these proteins from plots of initial rates of ATP hydrolysis as a function of ATP concentration, in the presence of GroES. Our results are consistent with a kinetic mechanism for dissociation of the GroEL-GroES complex according to which GroES release takes place after an ATP-induced conformational change in the trans ring that is preceded by ATP hydrolysis and a subsequent conformational change in the cis ring. It is shown that the rate of complex dissociation increases with increasing positive cooperativity in ATP binding by the GroEL ring distal to GroES in the GroEL-GroES complex.


Assuntos
Trifosfato de Adenosina/metabolismo , Chaperonina 10/metabolismo , Chaperonina 60/química , Chaperonina 60/metabolismo , Regulação Alostérica , Chaperonina 10/química , Chaperonina 60/genética , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Cinética , Substâncias Macromoleculares , Mutagênese Sítio-Dirigida , Mutação , Ligação Proteica
14.
Proc Natl Acad Sci U S A ; 99(22): 14095-7, 2002 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-12388779

RESUMO

What are the mechanisms of ligand-induced allosteric transitions in proteins? A powerful method to characterize pathways and transition states of reactions is phi value analysis. A phi value is the ratio between the changes on a perturbation (e.g., mutation) in the activation and equilibrium free energies of a reaction. Here, phi value analysis is used to characterize the ATP-induced allosteric transitions of GroEL by using changes in ATP concentration as perturbations. GroEL consists of two stacked back-to-back heptameric rings that bind ATP with positive cooperativity within rings and negative cooperativity between rings. Evidence is presented for the existence of parallel pathways for the allosteric transition of each ring. In both allosteric transitions, there is an abrupt ATP-dependent switch from a pathway with ATP-binding sites in the transition state that are very similar to those of the initial T state (phi = 0) to a pathway with a phi value of approximately 0.3. The phi value procedure outlined here should be useful in mapping the energy landscape of allosteric transitions of other proteins.


Assuntos
Chaperonina 60/metabolismo , Trifosfato de Adenosina/farmacologia , Regulação Alostérica , Chaperonina 60/genética , Mutagênese Sítio-Dirigida , Conformação Proteica
15.
Proc Natl Acad Sci U S A ; 100(24): 13797-802, 2003 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-14615587

RESUMO

The reaction cycle of the double-ring chaperonin GroEL is driven by ATP binding that takes place with positive cooperativity within each seven-membered ring and negative cooperativity between rings. The positive cooperativity within rings is due to ATP binding-induced conformational changes that are fully concerted. Herein, it is shown that the mutation Asp-155 --> Ala leads to an ATP-induced break in intra-ring and inter-ring symmetry. Electron microscopy analysis of single-ring GroEL particles containing the Asp-155 --> Ala mutation shows that the break in intra-ring symmetry is due to stabilization of allosteric intermediates such as one in which three subunits have switched their conformation while the other four have not. Our results show that eliminating an intra-subunit interaction between Asp-155 and Arg-395 results in conversion of the allosteric switch of GroEL from concerted to sequential, thus demonstrating that its allosteric behavior arises from coupled tertiary conformational changes.


Assuntos
Chaperonina 60/química , Chaperonina 60/genética , Trifosfato de Adenosina/metabolismo , Regulação Alostérica , Sítio Alostérico/genética , Substituição de Aminoácidos , Sequência de Bases , Chaperonina 60/metabolismo , DNA Bacteriano/genética , Cinética , Microscopia Eletrônica , Modelos Moleculares , Mutagênese Sítio-Dirigida , Estrutura Terciária de Proteína , Subunidades Proteicas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA