RESUMO
Recently, we have developed an algorithm to quantitatively evaluate the roughness of spherical microparticles using scanning electron microscopy (SEM) images. The algorithm calculates the root-mean-squared profile roughness (RMS-RQ) of a single particle by analyzing the particle's boundary. The information extracted from a single SEM image yields however only two-dimensional (2D) profile roughness data from the horizontal plane of a particle. The present study offers a practical procedure and the necessary software tools to gain quasi three-dimensional (3D) information from 2D particle contours recorded at different particle inclinations by tilting the sample (stage). This new approach was tested on a set of polystyrene core-iron oxide shell-silica shell particles as few micrometer-sized beads with different (tailored) surface roughness, providing the proof of principle that validates the applicability of the proposed method. SEM images of these particles were analyzed by the latest version of the developed algorithm, which allows to determine the analysis of particles in terms of roughness both within a batch and across the batches as a routine quality control procedure. A separate set of particles has been analyzed by atomic force microscopy (AFM) as a powerful complementary surface analysis technique integrated into SEM, and the roughness results have been compared.
RESUMO
Research investigating the interface between biological organisms and nanomaterials nowadays requires multi-faceted microscopic methods to elucidate the interaction mechanisms and effects. Here we describe a novel approach and methodology correlating data from an atomic force microscope inside a scanning electron microscope (AFM-in-SEM). This approach is demonstrated on bacteria-diamond-metal nanocomposite samples relevant in current life science research. We describe a procedure for preparing such multi-component test samples containing E. coli bacteria and chitosan-coated hydrogenated nanodiamonds decorated with silver nanoparticles on a carbon-coated gold grid. Microscopic topography information (AFM) is combined with chemical, material, and morphological information (SEM using SE and BSE at varied acceleration voltages) from the same region of interest and processed to create 3D correlative probe-electron microscopy (CPEM) images. We also establish a novel 3D RGB color image algorithm for merging multiple SE/BSE data from SEM with the AFM surface topography data which provides additional information about microscopic interaction of the diamond-metal nanocomposite with bacteria, not achievable by individual analyses. The methodology of CPEM data interpretation is independently corroborated by further in-situ (EDS) and ex-situ (micro-Raman) chemical characterization as well as by force volume AFM analysis. We also discuss the broader applicability and benefits of the methodology for life science research.