Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Plant Physiol ; 193(2): 1016-1035, 2023 09 22.
Artigo em Inglês | MEDLINE | ID: mdl-37440715

RESUMO

Belonging to Rosaceae, red raspberry (Rubus idaeus) and wild strawberry (Fragaria vesca) are closely related species with distinct fruit types. While the numerous ovaries become the juicy drupelet fruits in raspberry, their strawberry counterparts become dry and tasteless achenes. In contrast, while the strawberry receptacle, the stem tip, enlarges to become a red fruit, the raspberry receptacle shrinks and dries. The distinct fruit-forming ability of homologous organs in these 2 species allows us to investigate fruit type determination. We assembled and annotated the genome of red raspberry (R. idaeus) and characterized its fruit development morphologically and physiologically. Subsequently, transcriptomes of dissected and staged raspberry fruit tissues were compared to those of strawberry from a prior study. Class B MADS box gene expression was negatively associated with fruit-forming ability, which suggested a conserved inhibitory role of class B heterodimers, PISTILLATA/TM6 or PISTILLATA/APETALA3, for fruit formation. Additionally, the inability of strawberry ovaries to develop into fruit flesh was associated with highly expressed lignification genes and extensive lignification of the ovary pericarp. Finally, coexpressed gene clusters preferentially expressed in the dry strawberry achenes were enriched in "cell wall biosynthesis" and "ABA signaling," while coexpressed clusters preferentially expressed in the fleshy raspberry drupelets were enriched in "protein translation." Our work provides extensive genomic resources as well as several potential mechanisms underlying fruit type specification. These findings provide the framework for understanding the evolution of different fruit types, a defining feature of angiosperms.


Assuntos
Fragaria , Rubus , Rubus/genética , Frutas/metabolismo , Transcriptoma/genética , Genômica
2.
Plant Dis ; 108(6): 1486-1490, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38372721

RESUMO

Although it is currently eradicated from the United States, Plum pox virus (PPV) poses an ongoing threat to U.S. stone fruit production. Although almond (Prunus dulcis) is known to be largely resistant to PPV, there is conflicting evidence about its potential to serve as an asymptomatic reservoir host for the virus and thus serve as a potential route of entry. Here, we demonstrate that both Tuono and Texas Mission cultivars can be infected by the U.S. isolate PPV Dideron (D) Penn4 and that Tuono is a transmission-competent host, capable of serving as a source of inoculum for aphid transmission of the virus. These findings have important implications for efforts to keep PPV out of the United States and highlight the need for additional research to test the susceptibility of almond to other PPV-D isolates.


Assuntos
Afídeos , Doenças das Plantas , Vírus Eruptivo da Ameixa , Prunus dulcis , Vírus Eruptivo da Ameixa/fisiologia , Vírus Eruptivo da Ameixa/genética , Prunus dulcis/virologia , Doenças das Plantas/virologia , Afídeos/virologia , Animais , Prunus/virologia
3.
Plant J ; 109(6): 1614-1629, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34905278

RESUMO

Fruits represent key evolutionary innovations in angiosperms and exhibit diverse types adapted for seed dissemination. However, the mechanisms that underlie fruit type diversity are not understood. The Rosaceae family comprises many different fruit types, including 'pome' and 'drupe' fruits, and hence is an excellent family for investigating the genetic basis of fruit type specification. Using comparative transcriptomics, we investigated the molecular events that correlate with pome (apple) and drupe (peach) fleshy fruit development, focusing on the earliest stages of fruit initiation. We identified PI and TM6, MADS box genes whose expression negatively correlates with fruit flesh-forming tissues irrespective of fruit type. In addition, the MADS box gene FBP9 is expressed in fruit-forming tissues in both species, and was lost multiple times in the genomes of dry-fruit-forming eudicots including Arabidopsis. Network analysis reveals co-expression between FBP9 and photosynthesis genes in both apple and peach, suggesting that FBP9 and photosynthesis may both promote fleshy fruit development. The large transcriptomic datasets at the earliest stages of pome and drupe fruit development provide rich resources for comparative studies, and the work provides important insights into fruit-type specification.


Assuntos
Malus , Prunus persica , Rosaceae , Frutas/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Malus/genética , Prunus persica/genética , Rosaceae/genética , Transcriptoma/genética
4.
J Insect Sci ; 23(5)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37850668

RESUMO

The periodical cicadas in the genus Magicicada are remarkable for their unusual life histories and dramatic synchronized emergences every 13 or 17 years. While aspects of their evolution, mating behaviors, and general biology have been well-characterized, there is surprising uncertainty surrounding the feeding habits of the short-lived adult stage. Despite a tentative scientific consensus to the contrary, the perception that adult Magicicada do not feed has persisted among the general public, and recent studies are lacking. We directly investigated the feeding behavior of Magicicada spp. through high-throughput sequencing (HTS)-based dietary analysis of nymphs, freshly molted (teneral) adults, and fully sclerotized adults collected from orchard and wooded habitats during the 2021 emergence of Brood X. Identifiable plant DNA (trnF, ITS amplicons) was successfully recovered from nymphs and adults. No plant DNA was recovered from teneral adults, suggesting that all DNA recovered from sclerotized adults was ingested during the post-teneral adult stage. Both nymphs and adults were found to have ingested a range of woody and herbaceous plants across 17 genera and 14 families. Significantly more plant genera per individual were recovered from adults than from nymphs, likely reflecting the greater mobility of the adult stage. We hypothesize that the demonstrated ingestion of plant sap by Magicicada adults is driven by a need to replace lost water and support specialized bacteriome-dwelling endosymbionts that cicadas depend upon for growth and development, which constitutes true feeding behavior.


Assuntos
Hemípteros , Humanos , Animais , Hemípteros/genética , Ecossistema , Ninfa , Comportamento Alimentar , Reprodução
5.
Proc Natl Acad Sci U S A ; 115(20): E4690-E4699, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29712856

RESUMO

Plant shoots typically grow upward in opposition to the pull of gravity. However, exceptions exist throughout the plant kingdom. Most conspicuous are trees with weeping or pendulous branches. While such trees have long been cultivated and appreciated for their ornamental value, the molecular basis behind the weeping habit is not known. Here, we characterized a weeping tree phenotype in Prunus persica (peach) and identified the underlying genetic mutation using a genomic sequencing approach. Weeping peach tree shoots exhibited a downward elliptical growth pattern and did not exhibit an upward bending in response to 90° reorientation. The causative allele was found to be an uncharacterized gene, Ppa013325, having a 1.8-Kb deletion spanning the 5' end. This gene, dubbed WEEP, was predominantly expressed in phloem tissues and encodes a highly conserved 129-amino acid protein containing a sterile alpha motif (SAM) domain. Silencing WEEP in the related tree species Prunus domestica (plum) resulted in more outward, downward, and wandering shoot orientations compared to standard trees, supporting a role for WEEP in directing lateral shoot growth in trees. This previously unknown regulator of branch orientation, which may also be a regulator of gravity perception or response, provides insights into our understanding of how tree branches grow in opposition to gravity and could serve as a critical target for manipulating tree architecture for improved tree shape in agricultural and horticulture applications.


Assuntos
Proteínas de Plantas/metabolismo , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/crescimento & desenvolvimento , Prunus persica/crescimento & desenvolvimento , Motivo Estéril alfa , Árvores/crescimento & desenvolvimento , Mapeamento Cromossômico , Fenótipo , Filogenia , Proteínas de Plantas/genética , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/metabolismo , Brotos de Planta/anatomia & histologia , Brotos de Planta/metabolismo , Domínios Proteicos , Prunus persica/anatomia & histologia , Prunus persica/metabolismo , Árvores/anatomia & histologia , Árvores/metabolismo
6.
Plant Mol Biol ; 103(1-2): 197-210, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32130643

RESUMO

DEEPER ROOTING 1 (DRO1) contributes to the downward gravitropic growth trajectory of roots upstream of lateral auxin transport in monocots and dicots. Loss of DRO1 function leads to horizontally oriented lateral roots and altered gravitropic set point angle, while loss of all three DRO family members results in upward, vertical root growth. Here, we attempt to dissect the roles of AtDRO1 by analyzing expression, protein localization, auxin gradient formation, and auxin responsiveness in the atdro1 mutant. Current evidence suggests AtDRO1 is predominantly a membrane-localized protein. Here we show that VENUS-tagged AtDRO1 driven by the native AtDRO1 promoter complemented an atdro1 Arabidopsis mutant and the protein was localized in root tips and detectable in nuclei. atdro1 primary and lateral roots showed impairment in establishing an auxin gradient upon gravistimulation as visualized with DII-VENUS, a sensor for auxin signaling and proxy for relative auxin distribution. Additionally, PIN3 domain localization was not significantly altered upon gravistimulation in atdro1 primary and lateral roots. RNA-sequencing revealed differential expression of known root development-related genes in atdro1 mutants. atdro1 lateral roots were able to respond to exogenous auxin and AtDRO1 gene expression levels in root tips were unaffected by the addition of auxin. Collectively, the data suggest that nuclear localization may be important for AtDRO1 function and suggests a more nuanced role for DRO1 in regulating auxin-mediated changes in lateral branch angle. KEY MESSAGE: DEEPER ROOTING 1 (DRO1) when expressed from its native promoter is predominately localized in Arabidopsis root tips, detectable in nuclei, and impacts auxin gradient formation.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ácidos Indolacéticos/metabolismo , Proteínas Nucleares/fisiologia , Raízes de Plantas/metabolismo , Arabidopsis/crescimento & desenvolvimento , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/fisiologia , Núcleo Celular/metabolismo , Teste de Complementação Genética , Gravitação , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo
7.
Plant J ; 89(6): 1093-1105, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28029738

RESUMO

Roots provide essential uptake of water and nutrients from the soil, as well as anchorage and stability for the whole plant. Root orientation, or angle, is an important component of the overall architecture and depth of the root system; however, little is known about the genetic control of this trait. Recent reports in Oryza sativa (rice) identified a role for DEEPER ROOTING 1 (DRO1) in influencing the orientation of the root system, leading to positive changes in grain yields under water-limited conditions. Here we found that DRO1 and DRO1-related genes are present across diverse plant phyla, and fall within the IGT gene family. The IGT family also includes TAC1 and LAZY1, which are known to affect the orientation of lateral shoots. Consistent with a potential role in root development, DRO1 homologs in Arabidopsis and peach showed root-specific expression. Promoter-reporter constructs revealed that AtDRO1 is predominantly expressed in both the root vasculature and root tips, in a distinct developmental pattern. Mutation of AtDRO1 led to more horizontal lateral root angles. Overexpression of AtDRO1 under a constitutive promoter resulted in steeper lateral root angles, as well as shoot phenotypes including upward leaf curling, shortened siliques and narrow lateral branch angles. A conserved C-terminal EAR-like motif found in IGT genes was required for these ectopic phenotypes. Overexpression of PpeDRO1 in Prunus domestica (plum) led to deeper-rooting phenotypes. Collectively, these data indicate a potential application for DRO1-related genes to alter root architecture for drought avoidance and improved resource use.


Assuntos
Arabidopsis/metabolismo , Proteínas de Plantas/metabolismo , Raízes de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Prunus/metabolismo , Arabidopsis/genética , Arabidopsis/fisiologia , Gravitropismo/genética , Gravitropismo/fisiologia , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/fisiologia , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/metabolismo , Prunus/genética , Prunus/fisiologia
8.
J Exp Bot ; 69(20): 4935-4944, 2018 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-30099502

RESUMO

Light serves as an important environmental cue in regulating plant architecture. Previous work had demonstrated that both photoreceptor-mediated signaling and photosynthesis play a role in determining the orientation of plant organs. TILLER ANGLE CONTROL 1 (TAC1) was recently shown to function in setting the orientation of lateral branches in diverse plant species, but the degree to which it plays a role in light-mediated phenotypes is unknown. Here, we demonstrated that TAC1 expression was light dependent, as expression was lost under continuous dark or far-red growth conditions, but did not drop to these low levels during a diurnal time course. Loss of TAC1 in the dark was gradual, and experiments with photoreceptor mutants indicated this was not dependent upon red/far-red or blue light signaling, but partially required the signaling integrator CONSTITUTIVE PHOTOMORPHOGENESIS 1 (COP1). Overexpression of TAC1 partially prevented the narrowing of branch angles in the dark or under far-red light. Treatment with the carotenoid biosynthesis inhibitor norflurazon or the PSII inhibitor 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU) led to loss of TAC1 expression similar to dark or far-red conditions, but expression increased in response to the PSI inhibitor paraquat. Treatment of adult plants with norflurazon resulted in upward growth angle of branch tips. Our results indicate that TAC1 plays an important role in modulating plant architecture in response to photosynthetic signals.


Assuntos
Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Proteínas de Transporte/genética , Fotossíntese , Brotos de Planta/crescimento & desenvolvimento , Transdução de Sinais , Arabidopsis/metabolismo , Proteínas de Transporte/metabolismo
9.
J Exp Bot ; 69(7): 1499-1516, 2018 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-29361034

RESUMO

To unlock the power of next generation sequencing-based bulked segregant analysis in allele discovery in out-crossing woody species, and to understand the genetic control of the weeping trait, an F1 population from the cross 'Cheal's Weeping' × 'Evereste' was used to create two genomic DNA pools 'weeping' (17 progeny) and 'standard' (16 progeny). Illumina pair-end (2 × 151 bp) sequencing of the pools to a 27.1× (weeping) and a 30.4× (standard) genome (742.3 Mb) coverage allowed detection of 84562 DNA variants specific to 'weeping', 92148 specific to 'standard', and 173169 common to both pools. A detailed analysis of the DNA variant genotypes in the pools predicted three informative segregation types of variants: (type I) in weeping pool-specific variants, and (type II) and (type III) in variants common to both pools, where the first allele is assumed to be weeping linked and the allele shown in bold is a variant in relation to the reference genome. Conducting variant allele frequency and density-based mappings revealed four genomic regions with a significant association with weeping: a major locus, Weeping (W), on chromosome 13 and others on chromosomes 10 (W2), 16 (W3), and 5 (W4). The results from type I variants were noisier and less certain than those from type II and type III variants, demonstrating that although type I variants are often the first choice, type II and type III variants represent an important source of DNA variants that can be exploited for genetic mapping in out-crossing woody species. Confirmation of the mapping of W and W2, investigation into their genetic interactions, and identification of expressed genes in the W and W2 regions provided insight into the genetic control of weeping and its expressivity in Malus.


Assuntos
DNA de Plantas/genética , Variação Genética , Genoma de Planta , Malus/genética , Mapeamento Cromossômico , Genótipo , Malus/crescimento & desenvolvimento , Sequenciamento Completo do Genoma
10.
Transgenic Res ; 27(3): 225-240, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29651659

RESUMO

In most woody fruit species, transformation and regeneration are difficult. However, European plum (Prunus domestica) has been shown to be amenable to genetic improvement technologies from classical hybridization, to genetic engineering, to rapid cycle crop breeding ('FasTrack' breeding). Since the first report on European plum transformation with marker genes in the early 90 s, numerous manuscripts have been published reporting the generation of new clones with agronomically interesting traits, such as pests, diseases and/or abiotic stress resistance, shorter juvenile period, dwarfing, continuous flowering, etc. This review focuses on the main advances in genetic transformation of European plum achieved to date, and the lines of work that are converting genetic engineering into a contemporary breeding tool for this species.


Assuntos
Frutas/genética , Engenharia Genética , Plantas Geneticamente Modificadas/genética , Prunus domestica/genética , Frutas/crescimento & desenvolvimento , Melhoramento Vegetal , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Prunus domestica/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA