Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Res ; 150: 191-204, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27295409

RESUMO

This review contends that "healthy" water in terms of electrolyte balance is as important as "pure" water in promoting public health. It considers the growing use of desalination (demineralization) technologies in drinking water treatment which often results in tap water with very low concentrations of sodium, potassium, magnesium and calcium. Ingestion of such water can lead to electrolyte abnormalities marked by hyponatremia, hypokalemia, hypomagnesemia and hypocalcemia which are among the most common and recognizable features in cancer patients. The causal relationships between exposure to demineralized water and malignancies are poorly understood. This review highlights some of the epidemiological and in vivo evidence that link dysregulated electrolyte metabolism with carcinogenesis and the development of cancer hallmarks. It discusses how ingestion of demineralized water can have a procarcinogenic effect through mediating some of the critical pathways and processes in the cancer microenvironment such as angiogenesis, genomic instability, resistance to programmed cell death, sustained proliferative signaling, cell immortalization and tumorigenic inflammation. Evidence that hypoosmotic stress-response processes can upregulate a number of potential oncogenes is well supported by a number studies. In view of the rising production and consumption of demineralized water in most parts of the world, there is a strong need for further research on the biological importance and protean roles of electrolyte abnormalities in promoting, antagonizing or otherwise enabling the development of cancer. The countries of the Gulf Cooperative Council (GCC) where most people consume desalinated water would be a logical place to start this research.


Assuntos
Carcinogênese , Água Potável/efeitos adversos , Eletrólitos/efeitos adversos , Neoplasias/epidemiologia , Purificação da Água , Desequilíbrio Hidroeletrolítico/epidemiologia , Eletrólitos/metabolismo , Neoplasias/induzido quimicamente , Desequilíbrio Hidroeletrolítico/induzido quimicamente
2.
Carcinogenesis ; 36 Suppl 1: S61-88, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26106144

RESUMO

Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome's integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus, genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other chemicals present in our modern society could contribute to carcinogenesis by indirectly affecting genome stability. The selected chemicals with their mechanisms of action proposed to indirectly contribute to genome instability are: heavy metals (DNA repair, epigenetic modification, DNA damage signaling, telomere length), acrylamide (DNA repair, chromosome segregation), bisphenol A (epigenetic modification, DNA damage signaling, mitochondrial function, chromosome segregation), benomyl (chromosome segregation), quinones (epigenetic modification) and nano-sized particles (epigenetic pathways, mitochondrial function, chromosome segregation, telomere length). The purpose of this review is to describe the crucial aspects of genome instability, to outline the ways in which environmental chemicals can affect this cancer hallmark and to identify candidate chemicals for further study. The overall aim is to make scientists aware of the increasing need to unravel the underlying mechanisms via which chemicals at low doses can induce genome instability and thus promote carcinogenesis.


Assuntos
Carcinogênese/induzido quimicamente , Carcinógenos Ambientais/efeitos adversos , Exposição Ambiental/efeitos adversos , Instabilidade Genômica/efeitos dos fármacos , Substâncias Perigosas/efeitos adversos , Neoplasias/induzido quimicamente , Neoplasias/etiologia , Animais , Humanos
3.
Carcinogenesis ; 36 Suppl 1: S254-96, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26106142

RESUMO

Lifestyle factors are responsible for a considerable portion of cancer incidence worldwide, but credible estimates from the World Health Organization and the International Agency for Research on Cancer (IARC) suggest that the fraction of cancers attributable to toxic environmental exposures is between 7% and 19%. To explore the hypothesis that low-dose exposures to mixtures of chemicals in the environment may be combining to contribute to environmental carcinogenesis, we reviewed 11 hallmark phenotypes of cancer, multiple priority target sites for disruption in each area and prototypical chemical disruptors for all targets, this included dose-response characterizations, evidence of low-dose effects and cross-hallmark effects for all targets and chemicals. In total, 85 examples of chemicals were reviewed for actions on key pathways/mechanisms related to carcinogenesis. Only 15% (13/85) were found to have evidence of a dose-response threshold, whereas 59% (50/85) exerted low-dose effects. No dose-response information was found for the remaining 26% (22/85). Our analysis suggests that the cumulative effects of individual (non-carcinogenic) chemicals acting on different pathways, and a variety of related systems, organs, tissues and cells could plausibly conspire to produce carcinogenic synergies. Additional basic research on carcinogenesis and research focused on low-dose effects of chemical mixtures needs to be rigorously pursued before the merits of this hypothesis can be further advanced. However, the structure of the World Health Organization International Programme on Chemical Safety 'Mode of Action' framework should be revisited as it has inherent weaknesses that are not fully aligned with our current understanding of cancer biology.


Assuntos
Carcinogênese/induzido quimicamente , Carcinógenos Ambientais/efeitos adversos , Exposição Ambiental/efeitos adversos , Substâncias Perigosas/efeitos adversos , Neoplasias/induzido quimicamente , Neoplasias/etiologia , Animais , Humanos
4.
Radiat Environ Biophys ; 54(4): 445-51, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26319788

RESUMO

The aim of this study was to apply the fluorescence in situ hybridization (FISH) translocation assay in combination with chromosome painting of peripheral blood lymphocytes for retrospective biological dosimetry of Mayak nuclear power plant workers exposed chronically to external gamma radiation. These data were compared with physical dose estimates based on monitoring with badge dosimeters throughout each person's working life. Chromosome translocation yields for 94 workers of the Mayak production association were measured in three laboratories: Southern Urals Biophysics Institute, Leiden University Medical Center and the former Health Protection Agency of the UK (hereinafter Public Health England). The results of the study demonstrated that the FISH-based translocation assay in workers with prolonged (chronic) occupational gamma-ray exposure was a reliable biological dosimeter even many years after radiation exposure. Cytogenetic estimates of red bone marrow doses from external gamma rays were reasonably consistent with dose measurements based on film badge readings successfully validated in dosimetry system "Doses-2005" by FISH, within the bounds of the associated uncertainties.


Assuntos
Bioensaio/métodos , Aberrações Cromossômicas/efeitos da radiação , Hibridização in Situ Fluorescente , Linfócitos/fisiologia , Exposição Ocupacional/análise , Exposição à Radiação/análise , Absorção de Radiação , Idoso , Coloração Cromossômica , Feminino , Raios gama , Humanos , Linfócitos/efeitos da radiação , Masculino , Liberação Nociva de Radioativos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Translocação Genética/efeitos da radiação , Contagem Corporal Total
5.
Mutat Res ; 749(1-2): 53-9, 2012 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-22944079

RESUMO

In this study we implemented a new assay using a nested real-time polymerase chain reaction (PCR) to detect radiation-induced common deletion (CD) in mitochondrial DNA (mtDNA) of human peripheral lymphocytes. A standard curve for real-time PCR was established by applying a plasmid DNA containing human normal mtDNA or mutated mtDNA. Human peripheral lymphocyte DNA was amplified and quantified by real-time PCR using primer sets for total damaged or mutated mtDNA, plus probes labeled with the fluorescent dyes. The first-round PCR generated multiple products were used as the template for a second-round PCR. We herein describe a nested real-time PCR assay capable of quantifying mtDNA bearing the CD in human peripheral lymphocytes following exposure (in vitro) to (137)Cs γ-rays in a dose range of 0.5 up to 5Gy. The reproducibility of this assay was evident for both unirradiated and irradiated samples by examining human blood lymphocytes from 14 donors. This technique was sensitive enough to detect deletions in mtDNA at low dose levels, as low as 0.5Gy, and higher levels of CD mtDNA were evident at higher doses (≥1Gy), however, there was no consistent dose-response relationship.


Assuntos
DNA Mitocondrial/efeitos da radiação , Reação em Cadeia da Polimerase em Tempo Real , Deleção de Sequência , DNA Mitocondrial/sangue , Humanos , Linfócitos/química , Sensibilidade e Especificidade
6.
Radiat Res ; 193(5): 451-459, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32150497

RESUMO

Findings from previous studies have suggested that the telomerase system is involved in radiation-induced genomic instability. In this study, we investigated the involvement of telomerase in the development and processing of chromosomal damage at different cell cycle stages after irradiation of human fibroblasts. Several response criteria were investigated, including cell survival, chromosomal damage (using the micronucleus assay), G2-induced chromatid aberrations (using the conventional G2 assay as well as a chemically-induced premature chromosome condensation assay) and DNA double-strand breaks (DSBs; using γ-H2AX, 53BP1 and Rad51) in an isogenic pair of cell lines: BJ human foreskin fibroblasts and BJ1-hTERT, a telomerase-immortalized BJ cell line. To distinguish among G1, S and G2 phase, cells were co-immunostained for CENP-F and cyclin A, which are tightly regulated proteins in the cell cycle. After X-ray irradiation at doses in the range of 0.1-6 Gy, the results showed that for cell survival and micronuclei induction, where the overall effect is dominated by the cells in G1 and S phase, no difference was observed between the two cell types; in contrast, when radiation sensitivity at the G2 stage of the cell cycle was analyzed, a significantly higher number of chromatid-type aberrations (breaks and exchanges), and higher levels of γ-H2AX and of Rad51 foci were observed for the BJ cells compared to the BJ1-hTERT cells. Therefore, it can be concluded that telomerase appears to be involved in DNA DSB repair processes, mainly in the G2 phase. These data, taken overall, reinforce the notion that hTERT or other elements of the telomere/telomerase system may defend chromosome integrity in human fibroblasts by promoting repair in G2 phase of the cell cycle.


Assuntos
Instabilidade Genômica/efeitos da radiação , Telomerase/metabolismo , Linhagem Celular , Sobrevivência Celular/efeitos da radiação , Fibroblastos/citologia , Fibroblastos/metabolismo , Fibroblastos/efeitos da radiação , Fase G2/efeitos da radiação , Raios gama/efeitos adversos , Humanos , Testes para Micronúcleos , Rad51 Recombinase/metabolismo , Fase S/efeitos da radiação
7.
Mutat Res ; 652(2): 112-21, 2008 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-18337160

RESUMO

Chromosome translocations in peripheral blood lymphocytes of normal, healthy humans increase with age, but the effects of gender, race, and cigarette smoking on background translocation yields have not been examined systematically. Further, the shape of the relationship between age and translocation frequency (TF) has not been definitively determined. We collected existing data from 16 laboratories in North America, Europe, and Asia on TFs measured in peripheral blood lymphocytes by fluorescence in situ hybridization whole chromosome painting among 1933 individuals. In Poisson regression models, age, ranging from newborns (cord blood) to 85 years, was strongly associated with TF and this relationship showed significant upward curvature at older ages versus a linear relationship (p<0.001). Ever smokers had significantly higher TFs than non-smokers (rate ratio (RR)=1.19, 95% confidence interval (CI), 1.09-1.30) and smoking modified the effect of age on TFs with a steeper age-related increase among ever smokers compared to non-smokers (p<0.001). TFs did not differ by gender. Interpreting an independent effect of race was difficult owing to laboratory variation. Our study is three times larger than any pooled effort to date, confirming a suspected curvilinear relationship of TF with age. The significant effect of cigarette smoking has not been observed with previous pooled studies of TF in humans. Our data provide stable estimates of background TF by age, gender, race, and smoking status and suggest an acceleration of chromosome damage above age 60 and among those with a history of smoking cigarettes.


Assuntos
Translocação Genética , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Ásia , Criança , Pré-Escolar , Coloração Cromossômica , Etnicidade , Europa (Continente) , Feminino , Humanos , Hibridização in Situ Fluorescente , Lactente , Recém-Nascido , Cooperação Internacional , Masculino , Pessoa de Meia-Idade , América do Norte , Fatores de Risco , Fatores Sexuais , Fumar
8.
Cancer Lett ; 246(1-2): 290-9, 2007 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-16644106

RESUMO

Benzoxazinoids (BAs) are toxic constituents of sprouts of Gramineae such as wheat, maize and rye and are part of the plant defence system against pests. In the last years, sprouts have been increasingly consumed as health foods and are also used for the production of dietary supplements. In the present study we investigated the mutagenic activities of the two most abundant BAs, namely 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) and 2,4-dihydroxy-1,4-benzoxazin-3-one (DIBOA) in the Salmonella/microsome assay and additionally, in micronucleus (MN) assay and single cell gel electrophoresis (SCGE) assay in a human-derived liver cell line (HepG2). DIBOA caused significant induction of his(+) revertants in all three strains in the range between 0.02 and 0.50 mg/plate; the highest activity was observed in TA100 (fivefold increase over the background at the highest dose level). The effect in YG1024 (a derivative of TA98 with increased acetyltransferase activity) was only slightly higher than the effect in the parental strain indicating that acetylation plays no crucial role in the activation of this BA. DIMBOA was in general less active and a positive result was only seen in the base substitution strain (TA100). Addition of rat liver homogenate (S9-mix) led to a significant (ca. twofold) increase of the mutagenic activities of both BAs. In SCGE assays with HepG2 cells consistently negative results were obtained with both compounds whereas in MN assays significant dose dependent effects were observed under similar experimental conditions. DIMBOA caused significant effects already at concentrations > or =1 microM; at the highest dose (20 microM) the MN frequency was sevenfold higher than the background level. DIBOA caused weaker effects and was positive at doses > or =2.5 microM, the maximal induction (twofold over background) was observed with 20 microM. Overall, DIMBOA was ca. 30-fold more active as DIBOA. Subsequent experiments with pancentromeric probes showed that >80% of the MN induced at the highest doses gave a centromere positive signal indicating that both BAs are aneugenic. This is an interesting observation as it is assumed that aneuploidy is a key event in cancer induction and at present no other aneugenic plant-derived substances of dietary relevance are known.


Assuntos
Benzoxazinas/farmacologia , Oxazinas/farmacologia , Poaceae/química , Análise de Variância , Animais , Benzoxazinas/química , Benzoxazinas/toxicidade , Linhagem Celular Tumoral , Relação Dose-Resposta a Droga , Humanos , Hibridização in Situ Fluorescente , Extratos Hepáticos/química , Extratos Hepáticos/farmacologia , Micronúcleos com Defeito Cromossômico/estatística & dados numéricos , Testes para Micronúcleos , Estrutura Molecular , Testes de Mutagenicidade , Oxazinas/química , Oxazinas/toxicidade , Ratos , Salmonella/efeitos dos fármacos , Salmonella/genética , Plântula/química
9.
Mutat Res ; 615(1-2): 111-24, 2007 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-17169382

RESUMO

We analyzed the phenotype of cells derived from SCID patients with different mutations in the Artemis gene. Using clonogenic survival assay an increased sensitivity was found to X-rays (2-3-fold) and bleomycin (2-fold), as well as to etoposide, camptothecin and methylmethane sulphonate (up to 1.5-fold). In contrast, we did not find increased sensitivity to cross-linking agents mitomycin C and cis-platinum. The kinetics of DSB repair assessed by pulsed-field gel electrophoresis and gammaH2AX foci formation after ionizing irradiation, indicate that 15-20% of DSB are not repaired in Artemis-deficient cells. In order to get a better understanding of the repair defect in Artemis-deficient cells, we studied chromosomal damage at different stages of the cell cycle. In contrast to AT cells, Artemis-deficient cells appear to have a normal G(1)/S-block that resulted in a similar frequency of dicentrics and translocations, however, frequency of acentrics fragments was found to be 2-4-fold higher compared to normal fibroblasts. Irradiation in G(2) resulted in a higher frequency of chromatid-type aberrations (1.5-3-fold) than in normal cells, indicating that a fraction of DSB requires Artemis for proper repair. Our data are consistent with a function of Artemis protein in processing of a subset of complex DSB, without G(1) cell cycle checkpoint defects. This type of DSB can be induced in high proportion and persist through S-phase and in part might be responsible for the formation of chromatid-type exchanges in G(1)-irradiated Artemis-deficient cells. Among different human radiosensitive fibroblasts studied for endogenous (in untreated samples) as well as X-ray-induced DNA damage, the ranking order on the basis of higher incidence of spontaneously occurring chromosomal alterations and induced ones was: ligase 4> or =AT>Artemis. This observation implicates that in human fibroblasts following exposure to ionizing radiation a lower risk might be created when cells are devoid of endogenous damage.


Assuntos
Reparo do DNA/genética , Mutação , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ciclo Celular/genética , Ciclo Celular/efeitos da radiação , Linhagem Celular , Células Cultivadas , Instabilidade Cromossômica/efeitos dos fármacos , Instabilidade Cromossômica/efeitos da radiação , Aberrações Cromossômicas , Ensaio de Unidades Formadoras de Colônias , Quebras de DNA de Cadeia Dupla , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA , Endonucleases , Humanos , Hibridização in Situ Fluorescente , Mutagênicos/toxicidade , Fenótipo , Tolerância a Radiação , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/metabolismo , Imunodeficiência Combinada Severa/patologia
10.
Mutat Res ; 628(1): 31-55, 2007 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-17293159

RESUMO

Workshop participants agreed that genotoxicity tests in mammalian cells in vitro produce a remarkably high and unacceptable occurrence of irrelevant positive results (e.g. when compared with rodent carcinogenicity). As reported in several recent reviews, the rate of irrelevant positives (i.e. low specificity) for some studies using in vitro methods (when compared to this "gold standard") means that an increased number of test articles are subjected to additional in vivo genotoxicity testing, in many cases before, e.g. the efficacy (in the case of pharmaceuticals) of the compound has been evaluated. If in vitro tests were more predictive for in vivo genotoxicity and carcinogenicity (i.e. fewer false positives) then there would be a significant reduction in the number of animals used. Beyond animal (or human) carcinogenicity as the "gold standard", it is acknowledged that genotoxicity tests provide much information about cellular behaviour, cell division processes and cellular fate to a (geno)toxic insult. Since the disease impact of these effects is seldom known, and a verification of relevant toxicity is normally also the subject of (sub)chronic animal studies, the prediction of in vivo relevant results from in vitro genotoxicity tests is also important for aspects that may not have a direct impact on carcinogenesis as the ultimate endpoint of concern. In order to address the high rate of in vitro false positive results, a 2-day workshop was held at the European Centre for the Validation of Alternative Methods (ECVAM), Ispra, Italy in April 2006. More than 20 genotoxicity experts from academia, government and industry were invited to review data from the currently available cell systems, to discuss whether there exist cells and test systems that have a reduced tendency to false positive results, to review potential modifications to existing protocols and cell systems that might result in improved specificity, and to review the performance of some new test systems that show promise of improved specificity without sacrificing sensitivity. It was concluded that better guidance on the likely mechanisms resulting in positive results that are not biologically relevant for human health, and how to obtain evidence for those mechanisms, is needed both for practitioners and regulatory reviewers. Participants discussed the fact that cell lines commonly used for genotoxicity testing have a number of deficiencies that may contribute to the high false positive rate. These include, amongst others, lack of normal metabolism leading to reliance on exogenous metabolic activation systems (e.g. Aroclor-induced rat S9), impaired p53 function and altered DNA repair capability. The high concentrations of test chemicals (i.e. 10 mM or 5000 microg/ml, unless precluded by solubility or excessive toxicity) and the high levels of cytotoxicity currently required in mammalian cell genotoxicity tests were discussed as further potential sources of false positive results. Even if the goal is to detect carcinogens with short in vitro tests under more or less acute conditions, it does not seem logical to exceed the capabilities of cellular metabolic turnover, activation and defence processes. The concept of "promiscuous activation" was discussed. For numerous mutagens, the decisive in vivo enzymes are missing in vitro. However, if the substrate concentration is increased sufficiently, some other enzymes (that are unimportant in vivo) may take over the activation-leading to the same or a different active metabolite. Since we often do not use the right enzyme systems for positive controls in vitro, we have to rely on their promiscuous activation, i.e. to use excessive concentrations to get an empirical correlation between genotoxicity and carcinogenicity. A thorough review of published and industry data is urgently needed to determine whether the currently required limit concentration of 10mM or 5000 microg/ml, and high levels of cytotoxicity, are necessary for the detection of in vivo genotoxins and DNA-reactive, mutagenic carcinogens. In addition, various measures of cytotoxicity are currently allowable under OECD test guidelines, but there are few comparative data on whether different measures would result in different maximum concentrations for testing. A detailed comparison of cytotoxicity assessment strategies is needed. An assessment of whether test endpoints can be selected that are not intrinsically associated with cytotoxicity, and therefore are less susceptible to artefacts produced by cytotoxicity, should also be undertaken. There was agreement amongst the workshop participants that cell systems which are p53 and DNA-repair proficient, and have defined Phase 1 and Phase 2 metabolism, covering a broad set of enzyme forms, and used within the context of appropriately set limits of concentration and cytotoxicity, offer the best hope for reduced false positives. Whilst there is some evidence that human lymphocytes are less susceptible to false positives than the current rodent cell lines, other cell systems based on HepG2, TK6 and MCL-5 cells, as well as 3D skin models based on primary human keratinocytes also show some promise. Other human cell lines such as HepaRG, and human stem cells (the target for carcinogenicity) have not been used for genotoxicity investigations and should be considered for evaluation. Genetic engineering is also a valuable tool to incorporate missing enzyme systems into target cells. A collaborative research programme is needed to identify, further develop and evaluate new cell systems with appropriate sensitivity but improved specificity. In order to review current data for selection of appropriate top concentrations, measures and levels of cytotoxicity, metabolism, and to be able to improve existing or validate new assay systems, the participants called for the establishment of an expert group to identify the in vivo genotoxins and DNA-reactive, mutagenic carcinogens that we expect our in vitro genotoxicity assays to detect as well as the non-genotoxins and non-carcinogens we expect them not to detect.


Assuntos
Testes de Mutagenicidade , Animais , Células Cultivadas , Reações Falso-Positivas , Humanos , Modelos Biológicos , Kit de Reagentes para Diagnóstico , Técnicas de Cultura de Tecidos
11.
Int J Radiat Biol ; 93(1): 30-35, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27705052

RESUMO

PURPOSE: In the framework of RENEB, several biodosimetry exercises were conducted analyzing different endpoints. Among them, the analysis of translocations is considered the most useful method for retrospective biodosimetry due to the relative stability of their frequency with post irradiation time. The aim of this study was to harmonize the accuracy of translocation-based biodosimetry within the RENEB consortium. MATERIALS AND METHODS: An initial telescoring exercise analyzing FISH metaphase images was done to harmonize chromosome aberration descriptions. Then two blind intercomparison exercises (IE) were performed, by sending irradiated blood samples to each partner. Samples were cultured and stained by each partner using their standard protocol and translocation frequency was used to produce dose estimates. RESULTS: The coefficient of variation in the 1st IE (CV = 0.34) was higher than in the 2nd IE (CV = 0.16 and 0.23 in the two samples analyzed), for the genomic frequency of total translocations. Z-score analysis revealed that eight out of 10 and 17 out of 20 dose estimates were satisfactory in the 1st and 2nd IE, respectively. CONCLUSIONS: The results obtained indicate that, despite the problems identified in few partners, which can be corrected, the RENEB consortium is able to carry out retrospective biodosimetry analyzing the frequency of translocations by FISH.


Assuntos
Bioensaio/métodos , Hibridização in Situ Fluorescente/métodos , Garantia da Qualidade dos Cuidados de Saúde , Exposição à Radiação/análise , Monitoramento de Radiação/métodos , Translocação Genética/efeitos da radiação , Bioensaio/normas , Europa (Continente) , Humanos , Hibridização in Situ Fluorescente/normas , Linfócitos/efeitos da radiação , Monitoramento de Radiação/normas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Translocação Genética/genética
12.
Int J Radiat Biol ; 93(1): 48-57, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27813725

RESUMO

PURPOSE: Dose assessment intercomparisons within the RENEB network were performed for triage biodosimetry analyzing G0-lymphocyte PCC for harmonization, standardization and optimization of the PCC assay. MATERIALS AND METHODS: Comparative analysis among different partners for dose assessment included shipment of PCC-slides and captured images to construct dose-response curves for up to 6 Gy γ-rays. Accident simulation exercises were performed to assess the suitability of the PCC assay by detecting speed of analysis and minimum number of cells required for categorization of potentially exposed individuals. RESULTS: Calibration data based on Giemsa-stained fragments in excess of 46 PCC were obtained by different partners using galleries of PCC images for each dose-point. Mean values derived from all scores yielded a linear dose-response with approximately 4 excess-fragments/cell/Gy. To unify scoring criteria, exercises were carried out using coded PCC-slides and/or coded irradiated blood samples. Analysis of samples received 24 h post-exposure was successfully performed using Giemsa staining (1 excess-fragment/cell/Gy) or centromere/telomere FISH-staining for dicentrics. CONCLUSIONS: Dose assessments by RENEB partners using appropriate calibration curves were mostly in good agreement. The PCC assay is quick and reliable for whole- or partial-body triage biodosimetry by scoring excess-fragments or dicentrics in G0-lymphocytes. Particularly, analysis of Giemsa-stained excess PCC-fragments is simple, inexpensive and its automation could increase throughput and scoring objectivity of the PCC assay.


Assuntos
Bioensaio/métodos , Aberrações Cromossômicas/efeitos da radiação , Testes para Micronúcleos/métodos , Garantia da Qualidade dos Cuidados de Saúde , Exposição à Radiação/análise , Monitoramento de Radiação/métodos , Bioensaio/normas , Europa (Continente) , Humanos , Linfócitos/citologia , Linfócitos/efeitos da radiação , Monitoramento de Radiação/normas , Reprodutibilidade dos Testes , Fase de Repouso do Ciclo Celular/genética , Fase de Repouso do Ciclo Celular/efeitos da radiação , Sensibilidade e Especificidade
13.
Int J Radiat Biol ; 93(1): 36-47, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27673504

RESUMO

PURPOSE: In the framework of the 'Realizing the European Network of Biodosimetry' (RENEB) project, two intercomparison exercises were conducted to assess the suitability of an optimized version of the cytokinesis-block micronucleus assay, and to evaluate the capacity of a large laboratory network performing biodosimetry for radiation emergency triages. Twelve European institutions participated in the first exercise, and four non-RENEB labs were added in the second one. MATERIALS AND METHODS: Irradiated blood samples were shipped to participating labs, whose task was to culture these samples and provide a blind dose estimate. Micronucleus analysis was performed by automated, semi-automated and manual procedures. RESULTS: The dose estimates provided by network laboratories were in good agreement with true administered doses. The most accurate estimates were reported for low dose points (≤ 0.94 Gy). For higher dose points (≥ 2.7 Gy) a larger variation in estimates was observed, though in the second exercise the number of acceptable estimates increased satisfactorily. Higher accuracy was achieved with the semi-automated method. CONCLUSION: The results of the two exercises performed by our network demonstrate that the micronucleus assay is a useful tool for large-scale radiation emergencies, and can be successfully implemented within a large network of laboratories.


Assuntos
Bioensaio/métodos , Aberrações Cromossômicas/efeitos da radiação , Testes para Micronúcleos/métodos , Garantia da Qualidade dos Cuidados de Saúde , Exposição à Radiação/análise , Monitoramento de Radiação/métodos , Bioensaio/normas , Europa (Continente) , Humanos , Linfócitos/efeitos da radiação , Monitoramento de Radiação/normas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
14.
DNA Repair (Amst) ; 4(1): 81-9, 2005 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-15533840

RESUMO

Nucleotide excision repair (NER), cell cycle regulation and apoptosis are major defence mechanisms against the carcinogenic effects of UVB radiation. NER eliminates UVB-induced DNA photolesions via two subpathways: global genome repair (GGR) and transcription-coupled repair (TCR). In a previous study, we found UVB-induced accumulation of tetraploid (4N) keratinocytes in the epidermis of Xpc(-/-) mice (no GGR), but not in Xpa(-/-) (no TCR and no GGR) or in wild-type (WT) mice. We inferred that this arrest in Xpc(-/-) mice is caused by erroneous replication past photolesions, leading to 'compound lesions' known to be recognised by mismatch repair (MMR). MMR-induced futile cycles of breakage and resynthesis at sites of compound lesions may then sustain a cell cycle arrest. The present experiments with Xpc(-/-)Msh2(-/-) mice and derived keratinocytes show that the MMR protein Msh2 indeed plays a role in the generation of the UVB-induced arrested cells: a Msh2-deficiency lowered significantly the percentage of arrested cells in vivo (40-50%) and in vitro (30-40%). Analysis of calyculin A (CA)-induced premature chromosome condensation (PCC) of cultured Xpc(-/-) keratinocytes showed that the delayed arrest occurred in late S phase rather than in G(2)-phase. Taken together, the results indicate that in mouse epidermis and cultured keratinocytes, the MMR protein Msh2 plays a role in the UVB-induced S-phase arrest. This indicates that MMR plays a role in the UVB-induced S-phase arrest. Alternatively, Msh2 may have a more direct signalling function.


Assuntos
Pareamento Incorreto de Bases/genética , Ciclo Celular/efeitos da radiação , Reparo do DNA , Proteínas de Ligação a DNA/genética , Proteínas Proto-Oncogênicas/genética , Animais , Bromodesoxiuridina , Ciclo Celular/genética , Citometria de Fluxo , Queratinócitos/fisiologia , Toxinas Marinhas , Camundongos , Camundongos Mutantes , Proteína 2 Homóloga a MutS , Oxazóis , Raios Ultravioleta
15.
Radiat Res ; 166(2): 319-26, 2006 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-16881732

RESUMO

In interphase, chromosomes occupy defined nuclear volumes known as chromosome territories. To probe the biological consequences of the described nonrandom spatial positioning of chromosome territories in human lymphocytes, we performed an extensive FISH-based analysis of ionizing radiation-induced interchanges involving chromosomes 1, 4, 18 and 19. Since the probability of exchange formation depends strongly on the spatial distance between the damage sites in the genome, a preferential formation of exchanges between proximally positioned chromosomes is expected. Here we show that the spectrum of interchanges deviates significantly from one expected based on random chromosome positioning. Moreover, the observed exchange interactions between specific chromosome pairs as well as the interactions between homologous chromosomes are consistent with the proposed gene density-related radial distribution of chromosome territories. The differences between expected and observed exchange frequencies are more pronounced after exposure to densely ionizing neutrons than after exposure to sparsely ionizing X rays. These experiments demonstrate that the spatial positioning of interphase chromosomes affects the spectrum of chromosome rearrangements.


Assuntos
Aberrações Cromossômicas/efeitos da radiação , Posicionamento Cromossômico/fisiologia , Células Cultivadas , Cromossomos Humanos Par 1/genética , Cromossomos Humanos Par 1/efeitos da radiação , Cromossomos Humanos Par 18/genética , Cromossomos Humanos Par 18/efeitos da radiação , Cromossomos Humanos Par 19/genética , Cromossomos Humanos Par 19/efeitos da radiação , Cromossomos Humanos Par 4/genética , Cromossomos Humanos Par 4/efeitos da radiação , Humanos , Interfase/efeitos da radiação , Linfócitos/metabolismo , Linfócitos/efeitos da radiação
16.
Radiat Res ; 164(4 Pt 1): 383-90, 2005 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16187740

RESUMO

The adaptive response to ionizing radiation may be mediated by the induction of antioxidant defense mechanisms, accelerated repair or altered cell cycle progression after the conditioning dose. To gain new insight into the mechanism of the adaptive response, nondividing lymphocytes and fibroblasts were used to eliminate possible contributions of cell cycle effects. The effect of conditioning doses of 0.05 or 0.1 Gy followed by challenging doses up to 8 Gy (with a 4-h interval between exposures) on induction and repair of DNA damage was determined by single-cell gel electrophoresis (comet assay), premature chromosome condensation, and immunofluorescence labeling for gamma-H2AX. The conditioning dose reduced the induction of DNA strand breaks, but the kinetics of strand break rejoining was not influenced by the conditioning dose in nondividing cells of either cell type. We conclude that adaptation in nondividing cells is not mediated by enhanced strand break rejoining and that protection against the induction of DNA damage is rather small. Therefore, the adaptive response is most likely a reflection of perturbation of cell cycle progression.


Assuntos
Dano ao DNA , Reparo do DNA , Raios X , Células Cultivadas , Aberrações Cromossômicas , Histonas/metabolismo , Humanos , Fosforilação
17.
Health Phys ; 108(3): 371-6, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25627950

RESUMO

The dicentric chromosome assay (DCA) has been regarded as the gold standard of radiation biodosimetry. The assay, however, requires a 2-d peripheral blood lymphocyte culture before starting metaphase chromosome analyses to estimate biological doses. Other biological assays also have drawbacks with respect to the time needed to obtain dose estimates for rapid decision on the correct line of medical treatment. Therefore, alternative technologies that suit requirements for triage biodosimetry are needed. Radiation-induced DNA double strand breaks in G0 lymphocytes can be detected as interphase chromosome aberrations by the cell fusion-mediated premature chromosome condensation (PCC) method. The method, in combination with fluorescence in situ hybridization (FISH) techniques, has been proposed in early studies as a powerful tool for obtaining biological dose estimates without 2-d lymphocyte culture procedures. The present work assesses the applicability of FISH-based PCC techniques using pan-centromeric and telomeric peptide nucleic acid (PNA) probes in triage mode biodosimetry and demonstrates that an improved rapid procedure of the prematurely condensed dicentric chromosome (PCDC) assay has the potential for evaluating exposed radiation doses in as short as 6 h after the collection of peripheral blood specimens.


Assuntos
Aberrações Cromossômicas/efeitos da radiação , Hibridização in Situ Fluorescente/métodos , Radiometria/métodos , Triagem/métodos , Adulto , Feminino , Humanos , Fatores de Tempo
18.
Toxicology ; 198(1-3): 329-40, 2004 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-15138059

RESUMO

In this paper, we reviewed the data on the use of HepG2 cells to detect cytoprotective, antigenotoxic and cogenotoxic agents. Owing to their intact and inducible phase I and phase II enzymes, HepG2 cells are able to activate and detoxify xenobiotics and therefore reflect the metabolism of xenobiotics in the human body better than other metabolically incompetent cells used in conventional in vitro assays. Several dietary and non-dietary agents were found to be protective against different groups of cytotoxic and DNA-damaging xenobiotics in HepG2 cells and the mechanism of protection includes scavenging of electrophiles, reactive oxygen species and peroxides, inhibition of phase I activating enzymes, induction of phase II detoxifying enzymes and interactions with DNA-repair and/or replication processes. Additionally, certain non-mutagenic substances were found to enhance the effect of genotoxic agents in HepG2 cells by increasing the metabolic activation of the latter. In conclusion, HepG2 cells are of great relevance to detect cytotoxic and genotoxic substances and by extension cytoprotective, antigenotoxic and cogenotoxic agents.


Assuntos
Ensaio Cometa/métodos , Citoproteção , Fígado/efeitos dos fármacos , Testes para Micronúcleos/métodos , Xenobióticos , Linhagem Celular , Citoproteção/efeitos dos fármacos , Citoproteção/genética , Citoproteção/fisiologia , Humanos , Fígado/enzimologia , Xenobióticos/antagonistas & inibidores , Xenobióticos/toxicidade
19.
Mutat Res ; 551(1-2): 153-66, 2004 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-15225590

RESUMO

Aim of the study was to investigate the usefulness of two human derived hepatoma cell lines (HepG2 and Hep3B) for the detection of dietary and lifestyle related DNA-reactive carcinogens. Comparisons of the sensitivity of HepG2 cells of different origin towards benzo[a]pyrene (B(a)P) showed that strong differences exist in the induction of micronuclei (MN). The most sensitive was used for all further experiments, in which we investigated the effects of aflatoxin B(1) (AFB(1)), B(a)P, As(2)O(3), CdCl(2), 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine (PhIP), N-nitrosodimethylamine (NDMA), N-nitrosopyrrolidine (NPYR), 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), ethanol, acetaldehyde and caffeic acid in micronucleus (MN) tests. Dose dependent effects were detected in HepG2 with AFB(1) (0.2microM), CdCl(2) (2.2microM), As(2)O(3) (8.1microM), B(a)P (22.7microM), PhIP (35.7microM), NDMA (22.7mM), acetaldehyde (11.2mM) and ethanol (442.2mM). Numbers in parentheses indicate the C(D) values (concentration that induced a two-fold increase over the background). NNK and caffeic acid gave negative results under all conditions. In Hep3B cells, the effects were generally weaker. With PhIP, As(2)O(3) and NDMA negative results were obtained; with caffeic acid and NPYR marginal but significant induction of MN was observed. Enzyme measurements showed that both cell lines possess CYP1A1, glutathione-S-transferase (three-fold higher in HepG2) as well as N-acetyltransferase (NAT) 1 and sulfotransferases (SULT1A1 and SULT1A3; two- and seven-fold higher in HepG2); other cytochrome P450 enzymes (CYP1A2, 2B1, 2E1) and NAT2 were not detectable. The differences in the activities of the various enzymes may explain the contrasting results obtained in the MN experiments. Overall, our results indicate that the HepG2 line is more sensitive towards dietary genotoxins than Hep3B, and support the assumption that the HepG2/MN assay enables the detection of genotoxic carcinogens which give negative results in other currently used in vitro assays.


Assuntos
Carcinoma Hepatocelular/induzido quimicamente , Neoplasias Hepáticas/induzido quimicamente , Testes para Micronúcleos/métodos , Linhagem Celular Tumoral , Células Clonais , Dieta , Enzimas/análise , Humanos , Estilo de Vida , Mutagênicos , Sensibilidade e Especificidade
20.
Mutat Res ; 514(1-2): 29-38, 2002 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-11815242

RESUMO

The aim of the present study was to evaluate the genotoxic effects of hexavalent chromium (Cr(VI)) in vivo in exposed Bulgarian chromium platers by using classical cytogenetic and molecular cytogenetic analyses of peripheral lymphocytes and exfoliated buccal cells. No significant difference was observed between the exposed workers and the controls with regard to the frequency of cells with chromosome aberrations (CAs) using conventional Giemsa staining and in the frequency of sister chromatid exchanges (SCEs). However, there was a significant increase in the number of cells with micronuclei (MN) in peripheral lymphocytes from chromium exposed workers as compared to the controls. In the buccal cells from these workers, this increase was even more pronounced. Cytosine arabinoside (AraC), an inhibitor of DNA synthesis and repair, was found to significantly increase the levels of MN in vitro in the lymphocytes of both groups. The increase was more expressed in the lymphocytes of chromium exposed workers. Both centromere positive (C(+)) as well as centromere negative (C(-)) MN were observed by the fluorescence in situ hybridization (FISH) technique in both of the cell types studied. No difference between C(+) and C(-) MN frequencies was found in the lymphocytes as well as in the buccal cells. Thus, Cr(VI) appears to have both clastogenic as well as aneugenic effects in humans.


Assuntos
Carcinógenos Ambientais/toxicidade , Cromo/toxicidade , Aberrações Cromossômicas , Exposição Ocupacional , Troca de Cromátide Irmã , Adulto , Antimetabólitos Antineoplásicos/farmacologia , Bulgária , Células Cultivadas , Estudos de Coortes , Citarabina/farmacologia , Análise Citogenética , Feminino , Humanos , Exposição por Inalação , Linfócitos/efeitos dos fármacos , Linfócitos/fisiologia , Masculino , Micronúcleos com Defeito Cromossômico/metabolismo , Testes para Micronúcleos , Pessoa de Meia-Idade , Mucosa Bucal/citologia , Mucosa Bucal/efeitos dos fármacos , Mucosa Bucal/metabolismo , Testes de Mutagenicidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA