RESUMO
Bacteria that cause disease rely on their ability to counteract and overcome host defenses. Here, we present a genome-scale study of Mycobacterium tuberculosis (Mtb) that uncovers the bacterial determinants of surviving host immunity, sets of genes we term "counteractomes." Through this analysis, we found that CD4 T cells attempt to contain Mtb growth by starving it of tryptophan--a mechanism that successfully limits infections by Chlamydia and Leishmania, natural tryptophan auxotrophs. Mtb, however, can synthesize tryptophan under stress conditions, and thus, starvation fails as an Mtb-killing mechanism. We then identify a small-molecule inhibitor of Mtb tryptophan synthesis, which converts Mtb into a tryptophan auxotroph and restores the efficacy of a failed host defense. Together, our findings demonstrate that the Mtb immune counteractomes serve as probes of host immunity, uncovering immune-mediated stresses that can be leveraged for therapeutic discovery.
Assuntos
Linfócitos T CD4-Positivos/imunologia , Mycobacterium tuberculosis/metabolismo , Triptofano/biossíntese , Tuberculose/imunologia , Tuberculose/microbiologia , Animais , Vias Biossintéticas/efeitos dos fármacos , Humanos , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Interferon gama/imunologia , Macrófagos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Mycobacterium smegmatis/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/patogenicidade , Tuberculose/tratamento farmacológico , Fatores de Virulência/metabolismo , ortoaminobenzoatos/farmacologiaRESUMO
Host-directed therapies (HDTs) represent an emerging approach for bacterial clearance during tuberculosis (TB) infection. While most HDTs are designed and implemented for immuno-modulation, other host targets-such as nonimmune stromal components found in pulmonary granulomas-may prove equally viable. Building on our previous work characterizing and normalizing the aberrant granuloma-associated vasculature, here we demonstrate that FDA-approved therapies (bevacizumab and losartan, respectively) can be repurposed as HDTs to normalize blood vessels and extracellular matrix (ECM), improve drug delivery, and reduce bacterial loads in TB granulomas. Granulomas feature an overabundance of ECM and compressed blood vessels, both of which are effectively reduced by losartan treatment in the rabbit model of TB. Combining both HDTs promotes secretion of proinflammatory cytokines and improves anti-TB drug delivery. Finally, alone and in combination with second-line antitubercular agents (moxifloxacin or bedaquiline), these HDTs significantly reduce bacterial burden. RNA sequencing analysis of HDT-treated lung and granuloma tissues implicates up-regulated antimicrobial peptide and proinflammatory gene expression by ciliated epithelial airway cells as a putative mechanism of the observed antitubercular benefits in the absence of chemotherapy. These findings demonstrate that bevacizumab and losartan are well-tolerated stroma-targeting HDTs, normalize the granuloma microenvironment, and improve TB outcomes, providing the rationale to clinically test this combination in TB patients.
Assuntos
Tuberculose Latente , Mycobacterium tuberculosis , Tuberculose , Humanos , Animais , Coelhos , Bevacizumab/farmacologia , Losartan/farmacologia , Tuberculose/microbiologia , Antituberculosos/farmacologia , Granuloma , Tuberculose Latente/microbiologiaRESUMO
SUMMARYThe opportunistic pathogen Mycobacterium abscessus (Mab) causes fatal lung infections that bear similarities-and notable differences-with tuberculosis (TB) pulmonary disease. In contrast to TB, no antibiotic is formally approved to treat Mab disease, there is no reliable cure, and the discovery and development pipeline is incredibly thin. Here, we discuss the factors behind the unsatisfactory cure rates of Mab disease, namely intrinsic resistance and persistence of the pathogen, and the use of underperforming, often parenteral and toxic, repurposed drugs. We propose preclinical strategies to build injectable-free sterilizing and safe regimens: (i) prioritize oral bactericidal antibiotic classes, with an initial focus on approved agents or advanced clinical candidates to provide immediate options for desperate patients, (ii) test drug combinations early, (iii) optimize novel leads specifically for M. abscessus, and (iv) consider pharmacokinetic-pharmacodynamic targets at the site of disease, the lung lesions in which drug tolerant bacterial populations reside. Knowledge and tool gaps in the preclinical drug discovery process are identified, including validated mouse models and computational platforms to enable in vitro mouse-human translation. We briefly discuss recent advances in clinical development, the need for readouts and biomarkers that correlate with cure, and clinical trial concepts adapted to the uniqueness of Mab patient populations for new regimen development. In an era when most pharmaceutical firms have withdrawn from antimicrobial drug discovery, the breakthroughs needed to fill the regimen development pipeline will likely come from partnerships between academia, biotech, pharma, non-profit organizations, and governments, with incentives that reward cooperation.
RESUMO
Physiological abnormalities in pulmonary granulomas-pathological hallmarks of tuberculosis (TB)-compromise the transport of oxygen, nutrients, and drugs. In prior studies, we demonstrated mathematically and experimentally that hypoxia and necrosis emerge in the granuloma microenvironment (GME) as a direct result of limited oxygen availability. Building on our initial model of avascular oxygen diffusion, here we explore additional aspects of oxygen transport, including the roles of granuloma vasculature, transcapillary transport, plasma dilution, and interstitial convection, followed by cellular metabolism. Approximate analytical solutions are provided for oxygen and glucose concentration, interstitial fluid velocity, interstitial fluid pressure, and the thickness of the convective zone. These predictions are in agreement with prior experimental results from rabbit TB granulomas and from rat carcinoma models, which share similar transport limitations. Additional drug delivery predictions for anti-TB-agents (rifampicin and clofazimine) strikingly match recent spatially-resolved experimental results from a mouse model of TB. Finally, an approach to improve molecular transport in granulomas by modulating interstitial hydraulic conductivity is tested in silico.
Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Camundongos , Coelhos , Oxigênio/metabolismo , Tuberculose/tratamento farmacológico , Tuberculose/patologia , Granuloma/patologia , Modelos Animais de Doenças , Nutrientes , Mycobacterium tuberculosis/metabolismoRESUMO
Current chemotherapy against Mycobacterium tuberculosis (Mtb), an important human pathogen, requires a multidrug regimen lasting several months. While efforts have been made to optimize therapy by exploiting drugdrug synergies, testing new drug combinations in relevant host environments remains arduous. In particular, host environments profoundly affect the bacterial metabolic state and drug efficacy, limiting the accuracy of predictions based on in vitro assays alone. In this study, we utilized conditional Mtb knockdown mutants of essential genes as an experimentally tractable surrogate for drug treatment and probe the relationship between Mtb carbon metabolism and chemicalgenetic interactions (CGIs). We examined the antitubercular drugs isoniazid, rifampicin, and moxifloxacin and found that CGIs are differentially responsive to the metabolic state, defining both environment-independent and -dependent interactions. Specifically, growth on the in vivorelevant carbon source, cholesterol, reduced rifampicin efficacy by altering mycobacterial cell surface lipid composition. We report that a variety of perturbations in cell wall synthesis pathways restore rifampicin efficacy during growth on cholesterol, and that both environment-independent and cholesterol-dependent in vitro CGIs could be leveraged to enhance bacterial clearance in the mouse infection model. Our findings present an atlas of chemicalgeneticenvironmental interactions that can be used to optimize drugdrug interactions, as well as provide a framework for understanding in vitro correlates of in vivo efficacy.
Assuntos
Antituberculosos , Carbono , Parede Celular , Interações Medicamentosas , Interação Gene-Ambiente , Mycobacterium tuberculosis , Antituberculosos/farmacologia , Carbono/metabolismo , Parede Celular/ultraestrutura , Humanos , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Mycobacterium tuberculosis/ultraestruturaRESUMO
Cure rates for pulmonary disease caused by the Mycobacterium avium complex (MAC) are poor. While ß-lactam are front line antibiotics against Mycobacterium abscessus pulmonary disease, they have not been used or recommended to treat MAC lung infections. Through a comprehensive screen of oral ß-lactams, we have discovered that selected pairs combining either a penem/carbapenem or penicillin with a cephalosporin are strongly bactericidal at clinically achieved concentrations. These dual ß-lactam combinations include tebipenem and sulopenem, both in phase 3, and Food and Drug Administration-approved amoxicillin and cefuroxime. They could therefore immediately enter clinical trials or clinical practice.
Assuntos
Antibacterianos , Complexo Mycobacterium avium , Infecção por Mycobacterium avium-intracellulare , beta-Lactamas , Humanos , Complexo Mycobacterium avium/efeitos dos fármacos , beta-Lactamas/uso terapêutico , beta-Lactamas/administração & dosagem , Infecção por Mycobacterium avium-intracellulare/tratamento farmacológico , Infecção por Mycobacterium avium-intracellulare/microbiologia , Antibacterianos/administração & dosagem , Antibacterianos/uso terapêutico , Administração Oral , Pneumopatias/tratamento farmacológico , Pneumopatias/microbiologia , Testes de Sensibilidade MicrobianaRESUMO
Tuberculosis (TB) kills more people than any other infectious disease. Challenges for developing better treatments include the complex pathology due to within-host immune dynamics, interpatient variability in disease severity and drug pharmacokinetics-pharmacodynamics (PK-PD), and the growing emergence of resistance. Model-informed drug development using quantitative and translational pharmacology has become increasingly recognized as a method capable of drug prioritization and regimen optimization to efficiently progress compounds through TB drug development phases. In this review, we examine translational models and tools, including plasma PK scaling, site-of-disease lesion PK, host-immune and bacteria interplay, combination PK-PD models of multidrug regimens, resistance formation, and integration of data across nonclinical and clinical phases.We propose a workflow that integrates these tools with computational platforms to identify drug combinations that have the potential to accelerate sterilization, reduce relapse rates, and limit the emergence of resistance.
Assuntos
Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Antituberculosos/uso terapêutico , Combinação de Medicamentos , Humanos , Tuberculose/tratamento farmacológico , Tuberculose Resistente a Múltiplos Medicamentos/tratamento farmacológicoRESUMO
The dual ß-lactam approach has been successfully applied to overcome target redundancy in nontuberculous mycobacteria. Surprisingly, this approach has not been leveraged for Mycobacterium tuberculosis, despite the high conservation of peptidoglycan synthesis. Through a comprehensive screen of oral ß-lactam pairs, we have discovered that cefuroxime strongly potentiates the bactericidal activity of tebipenem and sulopenem-advanced clinical candidates-and amoxicillin, at concentrations achieved clinically. ß-lactam pairs thus have the potential to reduce TB treatment duration.
RESUMO
The Mycobacterium abscessus drug development pipeline is poorly populated, with particularly few validated target-lead couples to initiate de novo drug discovery. Trimethoprim, an inhibitor of dihydrofolate reductase (DHFR) used for the treatment of a range of bacterial infections, is not active against M. abscessus. Thus, evidence that M. abscessus DHFR is vulnerable to pharmacological intervention with a small molecule inhibitor is lacking. Here, we show that the pyrrolo-quinazoline PQD-1, previously identified as a DHFR inhibitor active against Mycobacterium tuberculosis, exerts whole cell activity against M. abscessus. Enzyme inhibition studies showed that PQD-1, in contrast to trimethoprim, is a potent inhibitor of M. abscessus DHFR and over-expression of DHFR causes resistance to PQD-1, providing biochemical and genetic evidence that DHFR is a vulnerable target and mediates PQD-1's growth inhibitory activity in M. abscessus. As observed in M. tuberculosis, PQD-1 resistant mutations mapped to the folate pathway enzyme thymidylate synthase (TYMS) ThyA. Like trimethoprim in other bacteria, PQD-1 synergizes with the dihydropteroate synthase (DHPS) inhibitor sulfamethoxazole (SMX), offering an opportunity to exploit the successful dual inhibition of the folate pathway and develop similarly potent combinations against M. abscessus. PQD-1 is active against subspecies of M. abscessus and a panel of clinical isolates, providing epidemiological validation of the target-lead couple. Leveraging a series of PQD-1 analogs, we have demonstrated a dynamic structure-activity relationship (SAR). Collectively, the results identify M. abscessus DHFR as an attractive target and PQD-1 as a chemical starting point for the discovery of novel drugs and drug combinations that target the folate pathway in M. abscessus.
Assuntos
Antagonistas do Ácido Fólico , Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Mycobacterium tuberculosis , Humanos , Mycobacterium abscessus/genética , Mycobacterium abscessus/metabolismo , Tetra-Hidrofolato Desidrogenase/genética , Tetra-Hidrofolato Desidrogenase/metabolismo , Antagonistas do Ácido Fólico/farmacologia , Trimetoprima/farmacologia , Mycobacterium tuberculosis/metabolismo , Inibidores Enzimáticos/farmacologia , Ácido Fólico , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológicoRESUMO
The spectinamides are novel, narrow-spectrum semisynthetic analogs of spectinomycin, modified to avoid intrinsic efflux by Mycobacterium tuberculosis. Spectinamides, including lead MBX-4888A (Lee-1810), exhibit promising therapeutic profiles in mice, as single drugs and as partner agents with other anti-tuberculosis antibiotics including rifampin and/or pyrazinamide. Here, we show that MBX-4888A, given by injection with the front-line standard of care regimen, is treatment shortening in multiple murine tuberculosis infection models. The positive treatment responses to MBX-4888A combination therapy in multiple mouse models, including mice exhibiting advanced pulmonary disease, can be attributed to favorable distribution in tissues and lesions, retention in caseum, along with favorable effects with rifampin and pyrazinamide under conditions achieved in necrotic lesions. This study also provides an additional data point regarding the safety and tolerability of spectinamide MBX-4888A in long-term murine efficacy studies.
RESUMO
Tuberculosis (TB) continues to be one of the deadliest infectious diseases in the world, causing ~1.5 million deaths every year. The World Health Organization initiated an End TB Strategy that aims to reduce TB-related deaths in 2035 by 95%. Recent research goals have focused on discovering more effective and more patient-friendly antibiotic drug regimens to increase patient compliance and decrease emergence of resistant TB. Moxifloxacin is one promising antibiotic that may improve the current standard regimen by shortening treatment time. Clinical trials and in vivo mouse studies suggest that regimens containing moxifloxacin have better bactericidal activity. However, testing every possible combination regimen with moxifloxacin either in vivo or clinically is not feasible due to experimental and clinical limitations. To identify better regimens more systematically, we simulated pharmacokinetics/pharmacodynamics of various regimens (with and without moxifloxacin) to evaluate efficacies, and then compared our predictions to both clinical trials and nonhuman primate studies performed herein. We used GranSim, our well-established hybrid agent-based model that simulates granuloma formation and antibiotic treatment, for this task. In addition, we established a multiple-objective optimization pipeline using GranSim to discover optimized regimens based on treatment objectives of interest, i.e., minimizing total drug dosage and lowering time needed to sterilize granulomas. Our approach can efficiently test many regimens and successfully identify optimal regimens to inform pre-clinical studies or clinical trials and ultimately accelerate the TB regimen discovery process.
Assuntos
Tuberculose Resistente a Múltiplos Medicamentos , Tuberculose , Animais , Camundongos , Antituberculosos , Moxifloxacina/uso terapêutico , Tuberculose/tratamento farmacológicoRESUMO
Spectinamides are a novel class of narrow-spectrum antitubercular agents with the potential to treat drug-resistant tuberculosis infections. Spectinamide 1810 has shown a good safety record following subcutaneous injection in mice or infusion in rats but exhibits transient acute toxicity following bolus administration in either species. To improve the therapeutic index of 1810, an injectable prodrug strategy was explored. The injectable phosphate prodrug 3408 has a superior maximum tolerated dose compared to 1810 or Gentamicin. Following intravenous administration in rodents, prodrug 3408 was quickly converted to 1810. The resulting 1810 exposure and pharmacokinetic profile after 3408 administration was identical to equivalent molar amounts of 1810 given directly by intravenous administration. 3408 and the parent 1810 exhibited similar overall efficacy in a BALB/c acute tuberculosis efficacy model. Delivery of 1810 in phosphate prodrug form, therefore, holds the potential to improve further the therapeutic index of an already promising tuberculosis antibiotic.
Assuntos
Antituberculosos , Camundongos Endogâmicos BALB C , Pró-Fármacos , Pró-Fármacos/síntese química , Pró-Fármacos/farmacologia , Pró-Fármacos/química , Animais , Antituberculosos/síntese química , Antituberculosos/farmacologia , Antituberculosos/química , Antituberculosos/farmacocinética , Camundongos , Ratos , Testes de Sensibilidade Microbiana , Espectinomicina/farmacologia , Espectinomicina/síntese química , Espectinomicina/química , Fosfatos/química , Fosfatos/farmacologia , Fosfatos/síntese química , Mycobacterium tuberculosis/efeitos dos fármacos , Estrutura Molecular , Relação Dose-Resposta a Droga , Relação Estrutura-AtividadeRESUMO
Triaza-coumarin (TA-C) is a Mycobacterium tuberculosis (Mtb) dihydrofolate reductase (DHFR) inhibitor with an IC50 (half maximal inhibitory concentration) of â¼1 µM against the enzyme. Despite this moderate target inhibition, TA-C shows exquisite antimycobacterial activity (MIC50, concentration inhibiting growth by 50% = 10 to 20 nM). Here, we investigated the mechanism underlying this potency disconnect. To confirm that TA-C targets DHFR and investigate its unusual potency pattern, we focused on resistance mechanisms. In Mtb, resistance to DHFR inhibitors is frequently associated with mutations in thymidylate synthase thyA, which sensitizes Mtb to DHFR inhibition, rather than in DHFR itself. We observed thyA mutations, consistent with TA-C interfering with the folate pathway. A second resistance mechanism involved biosynthesis of the redox coenzyme F420 Thus, we hypothesized that TA-C may be metabolized by Mtb F420-dependent oxidoreductases (FDORs). By chemically blocking the putative site of FDOR-mediated reduction in TA-C, we reproduced the F420-dependent resistance phenotype, suggesting that F420H2-dependent reduction is required for TA-C to exert its potent antibacterial activity. Indeed, chemically synthesized TA-C-Acid, the putative product of TA-C reduction, displayed a 100-fold lower IC50 against DHFR. Screening seven recombinant Mtb FDORs revealed that at least two of these enzymes reduce TA-C. This redundancy in activation explains why no mutations in the activating enzymes were identified in the resistance screen. Analysis of the reaction products confirmed that FDORs reduce TA-C at the predicted site, yielding TA-C-Acid. This work demonstrates that intrabacterial metabolism converts TA-C, a moderately active "prodrug," into a 100-fold-more-potent DHFR inhibitor, thus explaining the disconnect between enzymatic and whole-cell activity.
Assuntos
Antagonistas do Ácido Fólico/farmacologia , Complexos Multienzimáticos/metabolismo , Mycobacterium tuberculosis/enzimologia , Oxirredutases/metabolismo , Tetra-Hidrofolato Desidrogenase/metabolismo , Cumarínicos/química , Cumarínicos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Ácido Fólico/metabolismo , Antagonistas do Ácido Fólico/química , Genes Bacterianos , Mutação com Perda de Função/genética , Simulação de Acoplamento Molecular , Mycobacterium tuberculosis/efeitos dos fármacos , Mycobacterium tuberculosis/genética , Oxirredução , Tetra-Hidrofolato Desidrogenase/genéticaRESUMO
New oxazolidinones are in clinical development for the treatment of tuberculosis and nontuberculous mycobacterial (NTM) infections, as a replacement for linezolid and tedizolid, which cause mitochondrial toxicity after prolonged treatment. Here, we carried out side-by-side measurements of mitochondrial protein synthesis inhibition and activity against clinically relevant mycobacterial pathogens of approved and novel oxazolidinones. We found a large range of selectivity indices suggesting TBI-223 and sutezolid as promising candidates against tuberculosis and NTM lung disease caused by Mycobacterium kansasii.
Assuntos
Infecções por Mycobacterium não Tuberculosas , Oxazolidinonas , Tuberculose , Humanos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Oxazolidinonas/farmacologia , Oxazolidinonas/uso terapêutico , Linezolida/farmacologia , Linezolida/uso terapêutico , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Tuberculose/tratamento farmacológico , Micobactérias não TuberculosasRESUMO
Necrotic lesions and cavities filled with caseum are a hallmark of mycobacterial pulmonary disease. Bronchocavitary Mycobacterium abscessus disease is associated with poor treatment outcomes. In caseum surrogate, M. abscessus entered an extended stationary phase showing tolerance to killing by most current antibiotics, suggesting that caseum persisters contribute to the poor performance of available treatments. Novel ADP-ribosylation-resistant rifabutin analogs exhibited bactericidal activity against these M. abscessus persisters at concentrations achievable by rifamycins in caseum.
Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Rifamicinas , Humanos , Rifabutina/farmacologia , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Testes de Sensibilidade MicrobianaRESUMO
Tuberculosis meningitis (TBM) is essentially treated with the first-line regimen used against pulmonary tuberculosis, with a prolonged continuation phase. However, clinical outcomes are poor in comparison, for reasons that are only partially understood, highlighting the need for improved preclinical tools to measure drug distribution and activity at the site of disease. A predictive animal model of TBM would also be of great value to prioritize promising drug regimens to be tested in clinical trials, given the healthy state of the development pipeline for the first time in decades. Here, we report the optimization of a rabbit model of TBM disease induced via inoculation of Mycobacterium tuberculosis into the cisterna magna, recapitulating features typical of clinical TBM: neurological deterioration within months post-infection, acid-fast bacilli in necrotic lesions in the brain and spinal cord, and elevated lactate levels in cerebrospinal fluid (CSF). None of the infected rabbits recovered or controlled the disease. We used young adult rabbits, the size of which allows for spatial drug quantitation in critical compartments of the central nervous system that cannot be collected in clinical studies. To illustrate the translational value of the model, we report the penetration of linezolid from plasma into the CSF, meninges, anatomically distinct brain areas, cervical spine, and lumbar spine. Across animals, we measured the bacterial burden concomitant with neurological deterioration, offering a useful readout for drug efficacy studies. The model thus forms the basis for building a preclinical platform to identify improved regimens and inform clinical trial design.
Assuntos
Mycobacterium tuberculosis , Tuberculose Meníngea , Animais , Coelhos , Antituberculosos/farmacologia , Sistema Nervoso Central , Tuberculose Meníngea/tratamento farmacológicoRESUMO
The combination of the ß-lactam tebipenem and the ß-lactamase inhibitor avibactam shows potent bactericidal activity against Mycobacterium abscessus in vitro. Here, we report that the combination of the respective oral prodrugs tebipenem-pivoxil and avibactam ARX-1796 showed efficacy in a mouse model of M. abscessus lung infection. The results suggest that tebipenem-avibactam presents an attractive oral drug candidate pair for the treatment of M. abscessus pulmonary disease and could inform the design of clinical trials.
Assuntos
Infecções por Mycobacterium não Tuberculosas , Mycobacterium abscessus , Animais , Camundongos , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Infecções por Mycobacterium não Tuberculosas/tratamento farmacológico , Infecções por Mycobacterium não Tuberculosas/microbiologia , Modelos Animais de Doenças , Pulmão , Testes de Sensibilidade MicrobianaRESUMO
Global infections by non-tuberculous mycobacteria (NTM) are steadily rising. New drugs are needed to treat NTM infections, but the NTM drug pipeline remains poorly populated and focused on repurposing or reformulating approved antibiotics. We sought to accelerate de novo NTM drug discovery by testing advanced compounds with established activity against Mycobacterium tuberculosis 3-aminomethyl 4-halogen benzoxaboroles, a novel class of leucyl-tRNA synthetase inhibitors, were recently discovered as active against M. tuberculosis Here, we report that the benzoxaborole EC/11770 is not only a potent anti-tubercular agent but is active against the M. abscessus and M. avium complexes. Focusing on M. abscessus, which causes the most difficult-to-cure NTM disease, we show that EC/11770 retained potency against drug-tolerant biofilms in vitro and was effective in a mouse lung infection model. Resistant mutant selection experiments showed a low frequency of resistance and confirmed leucyl-tRNA synthetase as the target. This work establishes the benzoxaborole EC/11770 as a novel preclinical candidate for the treatment of NTM lung disease and tuberculosis and validates leucyl-tRNA synthetase as an attractive target for the development of broad-spectrum anti-mycobacterials.
RESUMO
Tuberculosis lung lesions are complex and harbor heterogeneous microenvironments that influence antibiotic effectiveness. Major strides have been made recently in understanding drug pharmacokinetics in pulmonary lesions, but the bacterial phenotypes that arise under these conditions and their contribution to drug tolerance are poorly understood. A pharmacodynamic marker called the RS ratio® quantifies ongoing rRNA synthesis based on the abundance of newly synthesized precursor rRNA relative to mature structural rRNA. Application of the RS ratio in the C3HeB/FeJ mouse model demonstrated that Mycobacterium tuberculosis populations residing in different tissue microenvironments are phenotypically distinct and respond differently to drug treatment with rifampin, isoniazid, or bedaquiline. This work provides a foundational basis required to address how anatomic and pathologic microenvironmental niches may contribute to long treatment duration and drug tolerance during the treatment of human tuberculosis.
Assuntos
Mycobacterium tuberculosis , Tuberculose , Camundongos , Animais , Humanos , Mycobacterium tuberculosis/genética , Antituberculosos/farmacologia , Antituberculosos/uso terapêutico , Camundongos Endogâmicos C3H , Tuberculose/tratamento farmacológico , Pulmão/microbiologia , Camundongos EndogâmicosRESUMO
BTZ-043, a suicide inhibitor of the Mycobacterium tuberculosis cell wall synthesis decaprenylphosphoryl-beta-D-ribose 2' epimerase, is under clinical development as a potential new anti-tuberculosis agent. BTZ-043 is potent and bactericidal in vitro but has limited activity against non-growing bacilli in rabbit caseum. To better understand its behavior in vivo, BTZ-043 was evaluated for efficacy and spatial drug distribution as a single agent in the C3HeB/FeJ mouse model presenting with caseous necrotic pulmonary lesions upon Mycobacterium tuberculosis infection. BTZ-043 promoted significant reductions in lung and spleen bacterial burdens in the C3HeB/FeJ mouse model after 2 months of therapy. BTZ-043 penetrates cellular and necrotic lesions and was retained at levels above the serum-shifted minimal inhibitory concentration in caseum. The calculated rate of kill was found to be highest and dose-dependent during the second month of treatment. BTZ-043 treatment was associated with improved histology scores of pulmonary lesions, especially compared to control mice, which experienced advanced fulminant neutrophilic alveolitis in the absence of treatment. These positive treatment responses to BTZ-043 monotherapy in a mouse model of advanced pulmonary disease can be attributed to favorable distribution in tissues and lesions, retention in the caseum, and its high potency and bactericidal nature at drug concentrations achieved in necrotic lesions.