Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Clin Sci (Lond) ; 133(22): 2283-2299, 2019 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-31713591

RESUMO

The role of inflammation in all phases of atherosclerotic process is well established and soluble TREM-like transcript 1 (sTLT1) is reported to be associated with chronic inflammation. Yet, no information is available about the involvement of sTLT1 in atherosclerotic cardiovascular disease. Present study was undertaken to determine the pathophysiological significance of sTLT1 in atherosclerosis by employing an observational study on human subjects (n=117) followed by experiments in human macrophages and atherosclerotic apolipoprotein E (apoE)-/- mice. Plasma level of sTLT1 was found to be significantly (P<0.05) higher in clinical (2342 ± 184 pg/ml) and subclinical cases (1773 ± 118 pg/ml) than healthy controls (461 ± 57 pg/ml). Moreover, statistical analyses further indicated that sTLT1 was not only associated with common risk factors for Coronary Artery Disease (CAD) in both clinical and subclinical groups but also strongly correlated with disease severity. Ex vivo studies on macrophages showed that sTLT1 interacts with FcÉ£ receptor I (FcÉ£RI) to activate spleen tyrosine kinase (SYK)-mediated downstream MAP kinase signalling cascade to activate nuclear factor-κ B (NF-kB). Activation of NF-kB induces secretion of tumour necrosis factor-α (TNF-α) from macrophage cells that plays pivotal role in governing the persistence of chronic inflammation. Atherosclerotic apoE-/- mice also showed high levels of sTLT1 and TNF-α in nearly occluded aortic stage indicating the contribution of sTLT1 in inflammation. Our results clearly demonstrate that sTLT1 is clinically related to the risk factors of CAD. We also showed that binding of sTLT1 with macrophage membrane receptor, FcÉ£R1 initiates inflammatory signals in macrophages suggesting its critical role in thrombus development and atherosclerosis.


Assuntos
Doença da Artéria Coronariana/sangue , Sistema de Sinalização das MAP Quinases , Macrófagos/metabolismo , Receptores de IgG/metabolismo , Receptores Imunológicos/sangue , Adenina/análogos & derivados , Adulto , Animais , Estudos de Casos e Controles , Linhagem Celular , Progressão da Doença , Humanos , Camundongos Knockout para ApoE , Pessoa de Meia-Idade , Oxazinas , Piperidinas , Pirazóis , Piridinas , Pirimidinas , Quinase Syk/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Domínios de Homologia de src
2.
Atherosclerosis ; 389: 117436, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38277990

RESUMO

BACKGROUNDS AND AIMS: The role of inflammation in driving atherosclerosis is well-established. It exerts systemic effects beyond the local site of plaque formation. In the context of coronary artery disease (CAD), the proteins that show altered levels in the plasma, are potentially important for understanding the key regulatory mechanism in the pathogenesis of atherosclerosis. A case-control study revealed that plasma soluble Peptidoglycan Recognition Protein 2 (PGLYRP2) primarily produced by the liver, is increased in subjects with CAD. Furthermore, the concentration of PGLYRP2 in the blood correlates with the severity of coronary artery disease. Thus, it raises interest in understanding the exact role of the protein in aortic inflammation and plaque progression. METHODS: We evaluated the plasma concentration of PGLYRP2 in three distinct groups: patients with CAD (N = 68), asymptomatic individuals (N = 34), and healthy volunteers (N = 20). Furthermore, we investigated the correlation between disease severity and PGLYRP2 levels in CAD patients. To identify potential binding partners of PGLYRP2, we employed computational analysis. We verified the PGLYRP2-NOD2 interaction in macrophage cells and elucidated the inflammatory pathways activated by PGLYRP2 within these cells. To assess the impact of PGLYRP2, we examined its effects in the atherosclerotic mice model (ApoE-/-). RESULTS: In this study, we report for the first time that Nucleotide-binding Oligomerization domain 2 (NOD2) which is expressed on the surface of macrophages, is a receptor of PGLYRP2. The N-terminal domain of PGLYRP2 directly binds to NOD2 and activates the NOD2-RIP2-NFκB cascade that promotes the secretion of proinflammatory cytokines like TNFα, IL1ß, and IL-8. In the atherosclerotic mice model (ApoE-/-) we demonstrate that elevated PGLYRP2 level is parallel with increased proinflammatory cytokines in the plasma when fed a High Cholesterol Diet (HCD). Immunohistochemical analysis reveals that PGLYRP2 is co-localized with NOD2 on the macrophages at the site of the lesion. CONCLUSIONS: Taken together, our data demonstrate that NOD2 acts as a receptor of PGLYRP2 on macrophages, which mediates the activation of the NOD2-RIP2-NFκB pathway and promotes inflammation, thus significantly contributing to the development and progression of atherosclerosis.


Assuntos
Proteínas de Transporte , Doença da Artéria Coronariana , N-Acetil-Muramil-L-Alanina Amidase , Animais , Humanos , Camundongos , Apolipoproteínas E/metabolismo , Aterosclerose/patologia , Proteínas de Transporte/metabolismo , Estudos de Casos e Controles , Citocinas/metabolismo , Inflamação/metabolismo , Proteína Adaptadora de Sinalização NOD2/genética , Proteína Adaptadora de Sinalização NOD2/metabolismo , N-Acetil-Muramil-L-Alanina Amidase/metabolismo
3.
Cytokine ; 61(1): 118-26, 2013 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23058476

RESUMO

IL-15 is a pleotropic cytokine, which plays an important role in natural killer (NK) cell activity, T cell proliferation, and T cell cytotoxic activity. Dendritic cells (DCs) are the major antigen presenting cells in the immune system and presumed to play an important role in immune recognition of allo and xenotransplantation. We showed that IL-15 activated human peripheral blood DC is cytotoxic to human and porcine aortic endothelial cells. Unlike DCs, CD14+ monocytes show no cytotoxicity against the endothelial cells. This cytotoxic potential of IL-15 activated DC against endothelial cells is dose dependent and increases significantly upon treatment of endothelial cells with inflammatory cytokines like TNF-α or IFN-γ. The cytotoxic potential of IL-15 activated DC is associated with apoptosis of endothelial cells, as indicated by the increased Annexin V staining, caspase activation and loss of mitochondrial membrane potential. Further it was observed that DC mediated cytotoxicity against endothelial cell is mediated via granzyme B possibly secreted by the activated DCs.


Assuntos
Apoptose/imunologia , Células Dendríticas/imunologia , Células Endoteliais/imunologia , Interleucina-15/imunologia , Animais , Aorta/imunologia , Células Cultivadas , Citotoxicidade Imunológica/imunologia , Granzimas/metabolismo , Humanos , Interferon gama/farmacologia , Interleucina-15/metabolismo , Células Matadoras Naturais/imunologia , Receptores de Lipopolissacarídeos , Ativação Linfocitária/imunologia , Potencial da Membrana Mitocondrial , Monócitos/metabolismo , Suínos , Linfócitos T Citotóxicos/imunologia , Transplante Heterólogo/imunologia , Transplante Homólogo/imunologia , Fator de Necrose Tumoral alfa/farmacologia
4.
Nat Commun ; 14(1): 3094, 2023 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-37248315

RESUMO

Oxidative stress is associated with cardiovascular and neurodegenerative diseases. Here we report studies of neurovascular oxidative stress in chemogenetic transgenic mouse lines expressing yeast D-amino acid oxidase (DAAO) in neurons and vascular endothelium. When these transgenic mice are fed D-amino acids, DAAO generates hydrogen peroxide in target tissues. DAAO-TGCdh5 transgenic mice express DAAO under control of the putatively endothelial-specific Cdh5 promoter. When we provide these mice with D-alanine, they rapidly develop sensory ataxia caused by oxidative stress and mitochondrial dysfunction in neurons within dorsal root ganglia and nodose ganglia innervating the heart. DAAO-TGCdh5 mice also develop cardiac hypertrophy after chronic chemogenetic oxidative stress. This combination of ataxia, mitochondrial dysfunction, and cardiac hypertrophy is similar to findings in patients with Friedreich's ataxia. Our observations indicate that neurovascular oxidative stress is sufficient to cause sensory ataxia and cardiac hypertrophy. Studies of DAAO-TGCdh5 mice could provide mechanistic insights into Friedreich's ataxia.


Assuntos
Ataxia de Friedreich , Camundongos , Animais , Camundongos Transgênicos , Cardiomegalia , Estresse Oxidativo , Ataxia/complicações
5.
Redox Biol ; 58: 102539, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36401888

RESUMO

Statins have manifold protective effects on the cardiovascular system. In addition to lowering LDL cholesterol levels, statins also have antioxidant effects on cardiovascular tissues involving intracellular redox pathways that are incompletely understood. Inhibition of HMG-CoA reductase by statins not only modulates cholesterol synthesis, but also blocks the synthesis of lipids necessary for the post-translational modification of signaling proteins, including the GTPase Rac1. Here we studied the mechanisms whereby Rac1 and statins modulate the intracellular oxidant hydrogen peroxide (H2O2) via NADPH oxidase (Nox) isoforms. In live-cell imaging experiments using the H2O2 biosensor HyPer7, we observed robust H2O2 generation in human umbilical vein endothelial cells (HUVEC) following activation of cell surface receptors for histamine or vascular endothelial growth factor (VEGF). Both VEGF- and histamine-stimulated H2O2 responses were abrogated by siRNA-mediated knockdown of Rac1. VEGF responses required the Nox isoforms Nox2 and Nox4, while histamine-stimulated H2O2 signals are independent of Nox4 but still required Nox2. Endothelial H2O2 responses to both histamine and VEGF were completely inhibited by simvastatin. In resting endothelial cells, Rac1 is targeted to the cell membrane and cytoplasm, but simvastatin treatment promotes translocation of Rac1 to the cell nucleus. The effects of simvastatin both on receptor-dependent H2O2 production and Rac1 translocation are rescued by treatment of cells with mevalonic acid, which is the enzymatic product of the HMG-CoA reductase that is inhibited by statins. Taken together, these studies establish that receptor-modulated H2O2 responses to histamine and VEGF involve distinct Nox isoforms, both of which are completely dependent on Rac1 prenylation.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , NADPH Oxidases , Humanos , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Peróxido de Hidrogênio/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Fator A de Crescimento do Endotélio Vascular/metabolismo , Histamina/farmacologia , Sinvastatina/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Isoformas de Proteínas/metabolismo , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
6.
J Proteomics ; 222: 103796, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32376501

RESUMO

Reverse cholesterol transport (RCT) plays a critical role in removing cholesterol from the arterial wall. However, very few reports directly relate chronic inflammation and RCT with atherosclerosis. The present study was undertaken to investigate clinical implications of significantly altered circulating proteins in subjects with ST-segment elevation myocardial infarction (STEMI) in the manifestation of atherosclerotic events. Using a case-control design, more than 2500 proteins in both STEMI and healthy control subjects were identified by Orbitrap mass spectrometer. Quantitative proteomics study revealed downregulation of 26 proteins while expression of 38 proteins increased significantly in STEMI subjects compared to healthy controls. Pathway enrichment analyses indicated that most of the identified proteins were related to chronic inflammation, atherosclerosis, and RCT. Altered proteins such as AZGP1, ABCA5, Calicin, PGLYRP2, HAVCR2 and C17ORF57 were further validated by Western blotting analysis of human plasma. Pathophysiological significance was studied using macrophage derived foam cell for their critical role in RCT which indicated the imbalance of RCT via the interaction of AZGP1 with CD36. In summary, this study revealed a unique relationship of some novel proteins apparently responsible for impaired RCT and chronic inflammation leading to atherothrombosis and myocardial infarction. SIGNIFICANCE: In the present study we identified ≥2500 unique circulating proteins in healthy control and clinically diagnosed STEMI subjects among which 423 proteins were found to be common in both the groups. We further show 64 proteins significantly different between healthy control and STEMI subjects. Proteomic analyses reveal a panel of proteins associated with atherosclerosis and STEMI. One of the proteins, AZGP1, an adipokine, is likely to act as the missing link between chronic inflammation and cholesterol transport. Deregulation of reverse cholesterol transport might be orchestrated by AZGP1, CD36, ABCA5, and PPARÉ£ in STEMI subjects. The present study employs shotgun and quantitative proteomics followed by in vitro validations demonstrating a biochemical basis for reverse cholesterol transport in the local milieu of the luminal wall of the artery which are critical for plaque build-up and atherosclerosis.


Assuntos
Infarto do Miocárdio , Infarto do Miocárdio com Supradesnível do Segmento ST , Colesterol , Humanos , Proteômica , Sujeitos da Pesquisa
8.
OMICS ; 22(12): 759-769, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30571610

RESUMO

The pituitary function is regulated by a complex system involving the hypothalamus and biological networks within the pituitary. Although the hormones secreted from the pituitary have been well studied, comprehensive analyses of the pituitary proteome are limited. Pituitary proteomics is a field of postgenomic research that is crucial to understand human health and pituitary diseases. In this context, we report here a systematic proteomic profiling of human anterior pituitary gland (adenohypophysis) using high-resolution Fourier transform mass spectrometry. A total of 2164 proteins were identified in this study, of which 105 proteins were identified for the first time compared with high-throughput proteomic-based studies from human pituitary glands. In addition, we identified 480 proteins with secretory potential and 187 N-terminally acetylated proteins. These are the first region-specific data that could serve as a vital resource for further investigations on the physiological role of the human anterior pituitary glands and the proteins secreted by them. We anticipate that the identification of previously unknown proteins in the present study will accelerate biomedical research to decipher their role in functioning of the human anterior pituitary gland and associated human diseases.


Assuntos
Adeno-Hipófise/metabolismo , Proteoma/metabolismo , Proteômica/métodos , Cromatografia Líquida , Humanos , Espectrometria de Massas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA