Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
J Environ Manage ; 283: 111989, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33516097

RESUMO

Experimental and computational investigations have been conducted in this study to assess the influence of municipal waste pyrolyzed biochar impregnated clay composites on antibiotic removal as a material for wastewater treatment and simultaneous value-addition for waste. The surface potential (zeta potential) of the pristine biochar and composite samples are found to be within the range ~10 to ~ -40 mV in the pH range 2-10. The presence of different inorganic salt solutions influences the electrophoretic mobility of the dispersed phase in a suspension, as well as its zeta potential. In addition of Na+ salt solutions, the Na+ ions undergo electrostatic interaction with the negatively charged biochar samples and form a double layer at the interface of biochar and ionic salt solution. Molecular dynamics simulations have been employed to understand experimental findings, ions adsorption and solute-solvent interactions at the molecular level of two biochar B7 (seven benzene rings, one methoxy, one aldehyde and two hydroxyls groups) and B17 (seventeen benzene rings, one methoxy, two hydroxyls and two carboxylic acid groups) in salts aqueous solutions. The results confirm that hydroxyls and carboxylate groups of biochar are responsible for solute-solvent interactions. Successful removal of tetracycline antibiotics is observed with 26 mg/g maximum adsorption capacity with montmorillonite biochar composite. This study confirms that interactions between amide and hydroxyl groups of tetracycline with hydroxyl and carboxylate groups of biochar play the key role in the adsorption process. The solution pH and presence of different background electrolytes effectively influence the process of solute-solvent interactions as well as adsorption efficacy towards tetracycline adsorption.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Adsorção , Antibacterianos , Carvão Vegetal , Argila , Concentração de Íons de Hidrogênio , Íons , Cinética , Solventes , Tetraciclina/análise , Poluentes Químicos da Água/análise
2.
Mikrochim Acta ; 186(1): 13, 2018 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-30539253

RESUMO

This work describes the preparation of bimetallic Cu-Pd nanoparticles (NPs) on supports like reduced graphene oxide (rGO), graphitic carbon nitride (g-C3N4) and MoS2 sheets with a size of <10 nm. rGO is found to be the best support for synthesizing Cu-Pd NPs with controlled shape, size and oxidation state. The Cu-Pd/rGO nanocomposite also demonstrated the best peroxidase and oxidase mimicking activity compared to Cu-Pd/g-C3N4 and Cu-Pd/MoS2 nanocomposites. The peroxidase mimicking activity of Cu-Pd/rGO was investigated in more detail, and a glucose oxidase (GOx) based glucose sensor was constructed that is based on the enzymatic formation of H2O2 and the Cu-Pd NPs-assisted oxidation of tetramethylbenzidine by H2O2 to give a blue-green coloration with absorption maxima at 652 nm. The assay has a 0.29 µM detection limit and a detection range that extends from 0.2 to 50 µM. The method was applied to the determination of glucose in diluted serum samples, and results compared well to those acquired with a clinical analyzer. The method also was applied in a colorimetric paper-based test stripe that can detect glucose within 10 min. Graphical abstract Schematic representation of a sensitive colorimetric glucose assay based on bimetallic Cu-Pd nanoparticles supported on 2D nanosheets, and construction of a paper based device for rapid glucose detection.

3.
Chemphyschem ; 15(18): 4019-25, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25302960

RESUMO

Graphene oxide (GO) is amphiphilic in nature, due to its structure, which consists of hydrophilic oxygen-containing functional groups and a hydrophobic basal plane of polyaromatic benzene rings. Due to this amphiphilicity, GO can create stable bubbles at water-organic solvent interfaces. In this study, the formation of bubbles at aqueous-organic interfaces in the presence of GO is investigated with different organic solvents. Bubble formation and transfer of GO from water to the organic phase is more prominent in aromatic solvents compared to aliphatic solvents, due to π-π interactions. Maximum transfer of GO from the aqueous to the organic phase is achieved at pH 2, and decreases with rising pH of the aqueous phase. Based on this property, and the ability of GO to adsorb cationic and anionic dye molecules, its application as a carrier for reactive extraction of cationic and anionic dye molecules is explored in toluene, kerosene, and carbon tetrachloride at pH 2 and 25 °C. The kinetics of the adsorption of the dyes onto GO nanosheets that takes place in the aqueous phase is also evaluated with different models, and a pseudo-second-order (linear) model is found to be the best fit. The adsorption isotherm data are also analyzed with different isotherm models. The electrostatic interaction and π-π interaction between the dye molecules and GO nanosheets leads to dye extraction of up to 98.2% using this technique. The dye extraction is maximum in toluene and at low dye concentration.

4.
Chem Commun (Camb) ; 60(17): 2417-2420, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38323809

RESUMO

Photonanozymes are novel enzyme-mimicking nanomaterials with light-harvesting capacity and have widespread applications in many areas including biosensing, biomedicine, environmental applications, energy, etc. Herein, we introduce freestanding metal-free biocompitable borophene nanosheets (BNSs) exhibiting excellent photoresponsive peroxidase-like activity for biosensing applications. The photo-enhanced peroxidase-like activity of BNSs photonanozyme was indicated to be due to its band gap energy being comparable to the energy of visible light.


Assuntos
Dopamina , Nanoestruturas , Colorimetria , Peroxidases , Peroxidase , Metais , Peróxido de Hidrogênio
5.
Chem Commun (Camb) ; 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38758095

RESUMO

An easy, in situ growth approach led to the formation of several composites of metal-organic framewoks and Nb4C3Tx MXenes mixed intimately at the submicron scale. The high affinity of MXene surface for dopamine, enhanced by a nanostructuration induced by MOFs, resulted in superior sensing performances. The system exhibited good linearity over the 1-100 nM range, with an excellent limit of detection of 0.2 nM.

6.
ACS Appl Mater Interfaces ; 16(12): 14645-14660, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38478795

RESUMO

The greater advantages and wide applications of zero-dimensional nanodots inspire researchers to develop new materials. Therefore, novel borophene quantum dots (QDs) were prepared by a hydrothermal liquid exfoliation technique using water medium. The borophene QDs proved to be highly stable in water medium for more than 120 days. The synthesized borophene QDs revealed intrinsic peroxidase mimetic activity using two chromogenic substrates, 3,3',5,5'-tetramethylbenzidine (TMB) and 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)diammonium salt (ABTS). The excellent intrinsic peroxidase activity toward TMB and ABTS substrates was executed using optimal reaction conditions (pH, borophene QDs' concentration, incubation time, and temperature). The formation of hydroxyl radicals in the presence of H2O2 upon TMB and ABTS oxidation played a significant role in the peroxidase reaction. The borophene QDs further proved to be successful for the colorimetric detection of antibiotics (oxytetracycline and tetracycline) using both TMB and ABTS peroxidase substrates. The limit of detection (LOD) for oxytetracycline and tetracycline was found to be 1.10 and 1.02 µM using TMB and 1.03 and 1.02 µM using ABTS chromogenic substrates, respectively. In addition, the fluorescence sensing of oxytetracycline and tetracycline over borophene QDs was also examined. The high fluorescence of borophene QDs (turn ON) was quenched (turn OFF) by oxytetracycline and tetracycline through the inner filter effect mechanism. The LOD of the fluorescence sensing of oxytetracycline and tetracycline was 1.14 and 1.08 µM, respectively. Interestingly, the borophene QDs could be used for the sensitive and selective colorimetric and fluorometric sensing of oxytetracycline and tetracycline after 120 days of storage. The synthesized borophene QDs with long-term stability and real sample analysis provide new insight as nanozymes with higher peroxidase mimetic and fluorescence performance and can be further exploited for medical diagnosis and environmental toxicants' detection.


Assuntos
Benzotiazóis , Oxitetraciclina , Pontos Quânticos , Ácidos Sulfônicos , Peroxidase , Compostos Cromogênicos , Peróxido de Hidrogênio/análise , Peroxidases , Antibacterianos/análise , Tetraciclina , Colorimetria/métodos , Água
7.
ACS Appl Mater Interfaces ; 16(20): 26870-26885, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38739846

RESUMO

Pathogen detection has become a major research area all over the world for water quality surveillance and microbial risk assessment. Therefore, designing simple and sensitive detection kits plays a key role in envisaging and evaluating the risk of disease outbreaks and providing quality healthcare settings. Herein, we have designed a facile and low-cost colorimetric sensing strategy for the selective and sensitive determination of ß-galactosidase producing pathogens. The hexagonal boron nitride quantum dots (h-BN QDs) were established as a nanozyme that showed prominent peroxidase-like activity, which catalyzes 3,3',5,5'-tetramethylbenzidine (TMB) oxidation by H2O2. The h-BN QDs were embedded on a layer-by-layer assembled agarose biopolymer. The ß-galactosidase enzyme partially degrades ß-1,4 glycosidic bonds of agarose polymer, resulting in accessibility of h-BN QDs on the solid surface. This assay can be conveniently conducted and analyzed by monitoring the blue color formation due to TMB oxidation within 30 min. The nanocomposite was stable for more than 90 days and was showing TMB oxidation after incubating it with Escherichia coli (E. coli). The limit of detection was calculated to be 1.8 × 106 and 1.5 × 106 CFU/mL for E. coli and Klebsiella pneumonia (K. pneumonia), respectively. Furthermore, this novel sensing approach is an attractive platform that was successfully applied to detect E. coli in spiked water samples and other food products with good accuracy, indicating its practical applicability for the detection of pathogens in real samples.


Assuntos
Benzidinas , Compostos de Boro , Colorimetria , Escherichia coli , Pontos Quânticos , beta-Galactosidase , Pontos Quânticos/química , Colorimetria/métodos , beta-Galactosidase/metabolismo , beta-Galactosidase/química , Escherichia coli/isolamento & purificação , Escherichia coli/enzimologia , Compostos de Boro/química , Benzidinas/química , Peróxido de Hidrogênio/química , Peróxido de Hidrogênio/análise , Peroxidase/química , Peroxidase/metabolismo , Limite de Detecção , Oxirredução , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/isolamento & purificação
8.
Nanotechnology ; 24(49): 495101, 2013 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-24231372

RESUMO

The paper reports on the preparation and antibacterial activity of silicon nanowire (SiNW) substrates coated with Ag or Cu nanoparticles (NPs) against Escherichia coli (E. coli) bacteria. The substrates are easily prepared using the metal-assisted chemical etching of crystalline silicon in hydrofluoric acid/silver nitrate (HF/AgNO3) aqueous solution. Decoration of the SiNWs with metal NPs is achieved by simple immersion in HF aqueous solutions containing silver or copper salts. The SiNWs coated with Ag NPs are biocompatible with human lung adenocarcinoma epithelial cell line A549 while possessing strong antibacterial properties to E. coli. In contrast, the SiNWs decorated with Cu NPs showed higher cytotoxicity and slightly lower antibacterial activity. Moreover, it was also observed that leakage of sugars and proteins from the cell wall of E. coli in interaction with SiNWs decorated with Ag NPs is higher compared to SiNWs modified with Cu NPs.


Assuntos
Antibacterianos/química , Cobre/química , Nanofios/química , Silício/química , Prata/química , Materiais Biocompatíveis , Linhagem Celular Tumoral , Parede Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Células HeLa , Humanos , Nanopartículas Metálicas/química
9.
ACS Appl Mater Interfaces ; 15(47): 54446-54457, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-37970629

RESUMO

Nonprecious transition-metal phosphides (TMPs) are versatile materials with tunable electronic and structural properties that could be promising as catalysts for energy conversion applications. Despite the facts, TMPs are not explored thoroughly to understand the chemistry behind their rich catalytic properties for the water splitting reaction. Herein, spiky ball-shaped monodispersed TMP nanoparticles composed of Fe, Co, and Ni are developed and used as efficient electrocatalysts for hydrogen and oxygen evolution reaction (HER, OER), and overall water splitting in alkaline medium; and their surface chemistry was explored to understand the reaction mechanism. The optimized Fe0.5CoNi0.5P catalyst shows attractive activities of HER and OER with low overpotentials and Tafel slopes, and with high mass activities, turnover frequencies, and exchange current densities. When applied to overall water splitting, the electrolyzer Fe0.5CoNi0.5P||Fe0.5CoNi0.5P cell can reach a 10 mA cm-2 current density at cell voltages of only 1.52 and 1.56 V in 1.0 M and 30 wt % KOH, respectively, much lower than those of commercial IrO2||Pt/C. The optimized electrolyzer with sizable numbers of chemically active sites exhibits superior durability up to 70 h and 5000 cycles in 1.0 M KOH and can attain a current density as high as 1000 mA cm-2, showing a class of efficient bifunctional electrocatalysis. Experimental and density functional theory-based mechanistic analyses reveal that surface reconstruction takes place in the presence of KOH to form the TMP precatalyst, which results in high coverage of oxygen active species for the OER with a low apparent activation energy (Ea) for conversion of *OOH to O2. These also evidenced the thermoneutral adsorption of H* for the efficient HER half-reaction.

10.
ACS Omega ; 8(41): 38524-38538, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37867683

RESUMO

Water pollution engendered from textile dyes and antibiotics is a globally identified precarious concern that is causing dreadful risks to human health as well as aquatic lives. This predicament is escalating the quest to develop competent photocatalysts that can degrade these water pollutants under solar light irradiation. Herein, we report an efficient photocatalyst comprising a hierarchical structure by integrating the layered graphitic carbon nitride (gC3N4) with nanoflakes of exfoliated BiFeO3. The coexistence of these two semiconducting nanomaterials leads to the formation of an S-scheme heterojunction. This nanocomposite demonstrated its excellent photocatalytic activity toward the degradation of several textile dyes (Yel CL2R, Levasol Yellow-CE, Levasol Red-GN, Navy Sol-R, Terq-CL5B) and various antibiotics (such as tetracycline hydrochloride (TCH), ciprofloxacin (CPX), sulfamethoxazole (SMX), and amoxicillin (AMX)) under the simulated solar light irradiation. As this photocatalyst exhibits its versatile activity toward the degradation of several commercial dyes as well as antibiotics, this work paves the path to develop a reasonable, eco-benign, and highly efficient photocatalyst that can be used in the practical approach to remediate environmental pollution.

11.
ACS Appl Mater Interfaces ; 15(41): 47902-47920, 2023 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-37812745

RESUMO

Recently, single atom catalysts (SACs) featuring M-Nx (M = metal) active sites on carbon support have drawn considerable attention due to their promising enzyme-like catalytic properties. However, typical synthesis methods of SACs often involve energy-intensive carbonization processes. Herein, we report a facile one-pot, low-temperature, wet impregnation method to fully utilize M-N4 sites of manganese phthalocyanine (MnPc) by decorating molecular MnPc over the sheets of graphene nanoplatelets (GNP). The synthesized MnPc@GNP exhibits remarkable peroxidase-mimic catalytic activity toward the oxidation of chromogenic 3,3',5,5'-tetramethylbenzidine (TMB) substrate owing to the efficient utilization of atomically dispersed Mn and the high surface-to-volume ratio of the porous catalyst. A nanozyme-based colorimetric sensing probe is developed to detect important biomarker glutathione (GSH) within only 5 min in solution phase based on the ability of GSH to effectively inhibit the TMB oxidation. The high sensitivity and selectivity of the developed colorimetric assay enable us to quantitatively determine GSH concentration in different biological fluids. This work, for the first time, reports a rapid MnPc@GNP nanozyme-based colorimetric assay in the solid substrate by fabricating microfluidic paper-based analytical devices (µPADs). GSH is successfully detected on the fabricated µPADs coated with only 6.0 µg of nanozyme containing 1.6 nmol of Mn in the linear range of 0.5-10 µM with a limit of detection of 1.23 µM. This work also demonstrates the quantitative detection of GSH in mice liver tissue lysate using µPADs, which paves the way to develop µPADs for point-of-care testing.


Assuntos
Grafite , Animais , Camundongos , Grafite/química , Manganês , Microfluídica , Oxirredutases/química , Peroxidase/química , Colorimetria/métodos , Glutationa , Peróxido de Hidrogênio/química
12.
ACS Omega ; 7(13): 11305-11319, 2022 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-35415351

RESUMO

The energy demand, the crisis of fossil fuels, and the increasing popularity of portable and wearable electronics in the global market have triggered the demand to develop high-performance flexible all-solid-state supercapacitors that are capable of delivering high energy at high power density as well as being safely entrenched in those electronics. Herein, we have designed a nanocomposite, 80CFhs-20rGOsp, which exhibits a high specific capacitance (C S) value of 1032 F g-1 at 3 A g-1. Utilizing this nanocomposite as the cathode and reduced graphene oxide sponge (rGOsp) as the anode, a flexible all-solid-state asymmetric device has been fabricated. In this device, poly(vinyl alcohol) (PVA) gel embedded with a mixture of 3 M KOH and 0.1 M K4[Fe(CN)6] was used as an electrolyte cum separator. The fabricated device showed the capability to deliver an energy density of 65.8 W h kg-1 at a power density of 1500 W kg-1 and retained its capability even after various physical deformations. The device also exhibited a long cycle life and retained ∼96% of its C S value after 5000 cycles. Moreover, the fabricated flexible all-solid-state device successfully illuminated light-emitting diodes, which proved its potential use in real-life supercapacitor applications. The obtained results revealed the excellent electrochemical performances of the fabricated device and rendered it a promising candidate in the energy sector.

13.
ACS Appl Mater Interfaces ; 14(4): 5468-5477, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-35060716

RESUMO

Transition metal phosphides (TMPs) are expected to be excellent electrocatalysts for oxygen evolution reaction (OER) because of their high stability, highly conducting metalloid nature, highly abundant constituting elements, and the ability to act as a precatalyst due to in situ surface-formed oxy-hydroxide species. Herein, a "one-pot" colloidal approach has been used to develop a rod-shaped one-dimensional non-noble metal FeCoP electrocatalyst, which exhibits an excellent OER activity with an exceptionally high current density of 950 mA cm-2, a turnover frequency value of 7.43 s-1, and a low Tafel slope value of 54 mV dec-1. The FeCoP electrocatalyst affords OER ultralow overpotentials of 230 and 260 mV at current densities of 50 and 100 mA cm-2, respectively, in 1.0 M KOH, and demonstrates a superior catalytic stability of 10,000 cycles and durability up to 60 h at 50 mA cm-2. An insight into the superior and stable electrocatalytic OER performance by the FeCoP nanorods is obtained by extensive X-ray photoelectron spectroscopy, X-ray diffraction, Raman and infrared spectroscopy, and cyclic voltammetry analyses for a mechanistic study. This reveals that a high number of electrocatalytically active sites enhance the oxygen evolution and kinetics by offering metal ion sites for utilitarian in situ surface formation and adsorption of *O, *OH, and *OOH reactive species for OER catalysis.

15.
ACS Omega ; 7(32): 28624-28635, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35990457

RESUMO

Demands to develop efficient microwave-absorbing materials are increasing with the advancement of information technology and the exponential rise in the usage of electromagnetic devices. To reduce electromagnetic interference and to overcome the adverse effects caused by microwave exposure resulting from the excessive usage of electromagnetic devices, microwave absorbers are very necessary. In addition, radar-absorbing materials are essential for stealth technology in military applications. Herein, we report a nanocomposite in which CoFe2O4 (CF) nanoparticles were grown within the porous structure of Al2O3 (PA), and this CoFe2O4-loaded Al2O3 (PA-CF) nanocomposite was immobilized on the surface of nanometer-thin graphene sheets (Gr). Owing to the hierarchical structure created by the constituents, the (60PA-40CF)90-Gr10 nanocomposite exhibited excellent microwave-absorption properties in the X-band region with a reflection loss (RL) value of ∼-30.68 dB (∼99.9% absorption) at 10.71 and 9.04 GHz when thicknesses were 2.0 and 2.3 mm, respectively. This nanocomposite demonstrated its competence as a lightweight, high-performance microwave absorber in the X-band region, which can be utilized in the applications of pioneering stealth technology.

17.
RSC Adv ; 12(13): 8030-8042, 2022 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-35424777

RESUMO

Three transition metal complexes (MC) namely, [TpMeMeCuCl(H2O)] (CuC), [TpMeMeNiCl] (NiC), and [TpMeMeFeCl2(H2O)] (FeC) {TpMeMe = tris(3,5-dimethylpyrazolyl)borate} were synthesized and structurally characterized. The three complexes CuC, NiC, and FeC-modified glassy carbon (GC) were examined as molecular electrocatalysts for the hydrogen evolution reaction (HER) in alkaline solution (0.1 M KOH). Various GC-MC electrodes were prepared by loading different amounts (ca. 0.2-0.8 mg cm-2) of each metal complex on GC electrodes. These electrodes were used as cathodes in aqueous alkaline solutions (0.1 M KOH) to efficiently generate H2 employing various electrochemical techniques. The three metal complexes' HER catalytic activity was assessed using cathodic polarization studies. The charge-transfer kinetics of the HER at the (GC-MC)/OH- interface at a given overpotential were also studied using the electrochemical impedance spectroscopy (EIS) technique. The electrocatalyst's stability and long-term durability tests were performed employing cyclic voltammetry (repetitive cycling up to 5000 cycles) and 48 h of chronoamperometry measurements. The catalytic evolution of hydrogen on the three studied MC surfaces was further assessed using density functional theory (DFT) simulations. The GC-CuC catalysts revealed the highest HER electrocatalytic activity, which increased with the catalyst loading density. With a low HER onset potential (E HER) of -25 mV vs. RHE and a high exchange current density of 0.7 mA cm-2, the best performing electrocatalyst, GC-CuC (0.8 mg cm-2), showed significant HER catalytic performance. Furthermore, the best performing electrocatalyst required an overpotential value of 120 mV to generate a current density of 10 mA cm-2 and featured a Tafel slope value of -112 mV dec-1. These HER electrochemical kinetic parameters were comparable to those measured here for the commercial Pt/C under the same operating conditions (-10 mV vs. RHE, 0.88 mA cm-2, 108 mV dec-1, and 110 mV to yield a current density of 10 mA cm-2), as well as the most active molecular electrocatalysts for H2 generation from aqueous alkaline electrolytes. Density functional theory (DFT) simulations were used to investigate the nature of metal complex activities in relation to hydrogen adsorption. The molecular electrostatic surface potential (MESP) of the metal complexes was determined to assess the putative binding sites of the H atoms to the metal complex.

18.
Chemosphere ; 268: 129328, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33359997

RESUMO

A facile and an eco-friendly reduction and functionalization of reduced graphene oxide (rGO) sheets is carried out using dopamine and decorated with magnetic Fe3O4 nanoparticles with an average size of 12 nm by a simple co-precipitation method which is established as an artificial nanozyme. Here, functionalization of graphene using dopamine has introduced several advantages and insights into this study. The Fe3O4 nanoparticles decorated functionalized rGO sheets (FDGs) nanozymes are characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), high-resolution transmission electron microscopy (HRTEM), Raman spectroscopy, atomic force microscopy (AFM), thermogravimetric (TGA) and vibrating sample magnetometer (VSM) analysis. FDGs nanozymes exhibits dual characteristics towards detection and degradation of harmful simazine pesticide. The hydrogen bonding interactions between pesticide molecules and 3,3',5,5'-tetramethylbenzidine (TMB) causes inhibition of the catalytic activity of the FDGs towards oxidation of TMB molecule. Based on that, the presence of simazine pesticide in an aqueous medium can be easily determined and a certain value (2.24 µM) of detection limit was achieved. The photocatalytic degradation of simazine is also executed and excellent photocatalytic activity was observed under irradiation of direct natural sunlight. The FDGs nanozyme is also reusable up to several times with insignificant loss in its catalytic activity towards simazine degradation.


Assuntos
Grafite , Praguicidas , Indóis , Óxidos , Polímeros , Triazinas
19.
Dalton Trans ; 50(38): 13483-13496, 2021 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-34492670

RESUMO

Fe3O4-SiO2 microspheres were synthesized by a three-step synthetic procedure involving silica coating, surface capping, and surface modification. These magnetic mesoporous microspheres were employed as sorbents for the incorporation of ultrasmall Ru nanoparticles (2-5 nm) followed by thermal aggregation of the microspheres for achieving better heterogeneity and low leaching. The Ru decorated Fe3O4-SiO2 microspheres (Ru@Fe3O4-CSM) were applied as chemoselective catalysts to convert more than 20 substituted nitroarenes to corresponding amines with good-to-excellent conversion (77-99%) and selectivity (70-100%) under mild conditions; the catalyst can be magnetically recovered within a frame of 90s (recovery time-lapse) and reused up to 5 times without significant decrease in activity or selectivity. Magnetic hysteresis studies were performed to elucidate the magnetic behavior of the ruthenium decorated materials.

20.
RSC Adv ; 11(58): 36698-36706, 2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-35494345

RESUMO

In this work, a colorimetric approach for the detection of ascorbic acid (AA) and thyroxine (TH) was developed by synthesizing cost-effective silver nanoparticles (AgNPs) decorated with epigallocatechin gallate (EGCG) and CTAB. EGCG is the major bioactive chemical constituent that played a significant role in this study. The environment around the nanoparticle (NP) was controlled by adding CTAB surfactants. The synthesized NPs were characterized by different advanced techniques including XRD, XPS, SEM, and TEM. UV-visible spectra were thoroughly analyzed for sensing of AA and TH and the colour change of the solution can be visually monitored. The change in the localized surface plasmon resonance (LSPR) properties was used as an asset for the detection of AA and TH. A good linear relationship was obtained in both the sensing schemes with a limit of detection (LoD) of 0.67 µM and 0.33 µM for AA and TH respectively. Furthermore, the nanoparticles (NP) were implemented for real-sample analysis (pharmaceutical tablets). A cost-effective filter paper strip-based method coupled with smartphone scanning sensing was developed for the detection of AA. The interaction of AA and TH with the probe was depicted by a density functional theory (DFT) analysis. The synthesized NPs show tremendous selectivity towards AA and TH and excellent potential for practical applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA