Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Langmuir ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046313

RESUMO

Cataract is one of the leading causes of blindness worldwide. Till date, the only solution for cataracts is surgery, which is a resource-intensive solution. A much simpler solution is to find a potential drug that could inhibit aggregation. It is well established that nonamyloid aggregates of eye lens protein result in cataract. γD-Crystallin, a thermodynamically stable protein, is one of the most abundant proteins in the core of the eye lens and is found to aggregate under stress conditions, leading to the cataract. It has also been found that in cataractous lens, the concentration of metals like copper is elevated significantly as compared to healthy eye lens, suggesting their role in inducing aggregation. In our present study, aggregation of γD-Crystallin was carried out in the presence of Cu (II). Using techniques like turbidity assay, CD spectroscopy, ANS binding assay, and microscopic studies like TEM, it could be confirmed that protein aggregates in the presence of Cu (II) and the nature of aggregates is amorphous. Various polyphenols were tested to suppress aggregation of the protein. Quercetin was observed to be the most efficient. To overcome the problems associated with the delivery of polyphenols, such as solubility and bioavailability, quercetin was encapsulated in two types of nanocarriers. Their characterization was done using TEM, DLS, and other techniques. The potency of quercetin-loaded CS-TPP/CS-PLGA NPs as inhibitors of γD-Crystallin aggregation was confirmed by various experiments.

2.
Luminescence ; 37(12): 2105-2122, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36271635

RESUMO

Ovalbumin (OVA), the major component of egg white, has been used as a model carrier protein to study the interaction of four bioactive phytochemicals 6-hydroxyflavone, chrysin, naringin, and naringenin. A static quenching mechanism was primarily associated with the complexation of the flavonoids with OVA. Hydrophobic forces play a major part in the stability of the complexes. The structural changes within the protein in response to flavonoid binding revealed a decrease in OVA's α-helical content. The hypothesized binding site for flavonoids in OVA overlaps with one or more immunoglobulin E-binding epitopes that may have some effect in the immunoglobulin E response pathway. The flavonoids remain in the same binding site throughout the simulation time and impart protein stability by forming different noncovalent interactions. This study presents comprehensive information about the interaction of the flavonoids with OVA and the associated structural variations after the binding, which might help researchers better comprehend similar medication pharmacodynamics and provide critical information for future therapeutic development.


Assuntos
Hipersensibilidade a Ovo , Clara de Ovo , Humanos , Ovalbumina/química , Ovalbumina/metabolismo , Imunoglobulina E/química , Imunoglobulina E/metabolismo , Alérgenos/química , Ligação Proteica , Simulação de Acoplamento Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA