Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 24(12)2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38931555

RESUMO

Well-being can reflect people's psychological conditions and be used alongside physiological parameters to evaluate patients' physical and mental health. The modern medical environment increasingly incorporates digital carriers, human-computer interaction devices, sensible spaces, and the execution of suitable algorithms. Slow design in healthy human-computer interaction is often used to reflect people's dependence on or support from behaviors or objects, promoting the stability of behaviors as well as meaningful and positive changes. Therefore, in this study, we propose a slow sensing model, develop a Slow Well-Being Gardening system, and use it to evaluate behavioral data from radiation therapy patients during treatment sessions and horticultural therapy. This study is based on SENS and slow design, setting the hospital lounge as a sensible space and establishing a sensor system. After a 10-day inspection, the process was evaluated and verified. Ultimately, data from facial detection (smile) and HRV showed that the patients in the experimental group experienced a significant improvement in their well-being, feeling better than those in the control group who maintained the most common state in normal treatment. Therefore, it can be inferred that the Slow Well-Being Gardening model is indeed valid and can be further developed.


Assuntos
Jardinagem , Horticultura Terapêutica , Humanos , Jardinagem/métodos , Feminino , Masculino , Algoritmos , Pessoa de Meia-Idade , Sorriso , Frequência Cardíaca/fisiologia , Radioterapia
2.
Sensors (Basel) ; 23(6)2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36991600

RESUMO

In factories, energy conservation is a crucial issue. The co-fabrication space is a modern-day equivalent of a new factory type, and it makes use of Internet of Things (IoT) devices, such as sensors, software, and online connectivity, to keep track of various building features, analyze data, and produce reports on usage patterns and trends that can be used to improve building operations and the environment. The co-fabrication user requires dynamic and flexible space, which is different from the conventional user's usage. Because the user composition in a co-fabrication space is dynamic and unstable, we cannot use the conventional approach to assess their usage and rentals. Prototyping necessitates a specifically designed energy-saving strategy. The research uses a "seeing-moving-seeing" design thinking framework, which enables designers to more easily convey their ideas to others through direct observation of the outcomes of their intuitive designs and the representation of their works through design media. The three components of human behavior, physical manufacture, and digital interaction are primarily the focus of this work. The computing system that connects the physical machine is created through communication between the designer and the digital interface, giving the designer control over the physical machine. It is an interactive fabrication process formed by behavior. The Sensible Energy System+ is an interactive fabrication process of virtual and real coexistence created by combining the already-existing technology, the prototype fabrication machine, and SENS. This process analyzes each step of the fabrication process and energy, fits it into the computing system mode to control the prototype fabrication machine, and reduces the problem between virtual and physical fabrication and energy consumption.

3.
BMC Genomics ; 21(1): 425, 2020 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-32580699

RESUMO

BACKGROUND: Cellular reprogramming in response to environmental stress involves alteration of gene expression, changes in the protein and metabolite profile for ensuring better stress management in plants. Similar to other plant species originating in tropical and sub-tropical areas, indica rice is highly sensitive to low temperature that adversely affects its growth and grain productivity. Substantial work has been done to understand cold induced changes in gene expression in rice plants. However, adequate information is not available for early gene expression, especially in indica variety. Therefore, a transcriptome profile was generated for cold shock treated seedlings of IR64 variety to identify early responsive genes. RESULTS: The functional annotation of early DEGs shows enrichment of genes involved in altered membrane rigidity and electrolytic leakage, the onset of calcium signaling, ROS generation and activation of stress responsive transcription factors in IR64. Gene regulatory network suggests that cold shock induced Ca2+ signaling activates DREB/CBF pathway and other groups of transcription factors such as MYB, NAC and ZFP; for activating various cold-responsive genes. The analysis also indicates that cold induced signaling proteins like RLKs, RLCKs, CDPKs and MAPKK and ROS signaling proteins. Further, several late-embryogenesis-abundant (LEA), dehydrins and low temperature-induced-genes were upregulated under early cold shock condition, indicating the onset of water-deficit conditions. Expression profiling in different high yielding cultivars shows high expression of cold-responsive genes in Heera and CB1 indica varieties. These varieties show low levels of cold induced ROS production, electrolytic leakage and high germination rate post-cold stress, compared to IR36 and IR64. Collectively, these results suggest that these varieties may have improved adaptability to cold stress. CONCLUSIONS: The results of this study provide insights about early responsive events in Oryza sativa l.ssp. indica cv IR64 in response to cold stress. Our data shows the onset of cold response is associated with upregulation of stress responsive TFs, hydrophilic proteins and signaling molecules, whereas, the genes coding for cellular biosynthetic enzymes, cell cycle control and growth-related TFs are downregulated. This study reports that the generation of ROS is integral to the early response to trigger the ROS mediated signaling events during later stages.


Assuntos
Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Oryza/classificação , Resposta ao Choque Frio , Regulação da Expressão Gênica de Plantas , Germinação , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Oryza/fisiologia , Filogenia , Proteínas de Plantas/genética , Espécies Reativas de Oxigênio/metabolismo
4.
Sensors (Basel) ; 20(19)2020 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-32992965

RESUMO

User behaviour and choice is a significant parameter in the consumption patterns of energy in the built environment. This paper introduces a behavior-based approach for developing smart energy applications. With the rapid development of wireless sensor networks and the Internet of Things (IoT), human-computer interfaces can be created through the mapping of user experiences. These applications can provide users with dynamic feedback on their energy consumption patterns in their built environment. The paper describes a "Sensible Energy System" (SENS) that is based on user experience design methods with sensor network technology. Through SENS, solar energy simulation is combined with device consumption data in order to achieve an IoT network to facilitate the interaction between user behaviors and electricity consumption. The interaction between users and devices through SENS can not only optimize power consumption, but also provide consumers with additional choice and dynamic decision making regarding their consumption. This article provides an (1) understanding and analysis of users' spatial interaction, explains the (2) planning of the new smart environment design and user experiences, discusses (3) designing a suitable Wireless sensor network (WSN) agent and energy connection, describes (4) the information that has been collected, and (5) incorporates a rooftop solar potential simulation for predicting energy outputs into the sensor network model.

5.
Physiol Mol Biol Plants ; 26(4): 669-682, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32255931

RESUMO

Study of genetic diversity in crop plants is essential for the selection of appropriate germplasm for crop improvement. As salinity posses a serious environmental challenge to rice production globally and especially in India, it is imperative that the study of large collections of germplasms be undertaken to search for salt tolerant stocks. In the present study, 64 indica germplasms were collected from different agro-climatic zones of West Bengal, India, from the Himalayan foothills in the northern part down to the southern saline belt of the state keeping in view the soil characteristics and other edaphic factors prevailing in the region. Salt tolerance parameters were used to screen the large set of germplasms in terms of root-shoot length, fresh-dry weight, chlorophyll content, Na+/K+ ratio and germination potential in presence of salt. Standard evaluation score or SES was calculated to find out tolerant to sensitive cultivar. Twenty-one SSR markers, some associated with the Saltol QTL and others being candidate gene based SSR (cgSSR) were used to study the polymorphism of collected germplasm. A wide diversity was detected among the collected germplasms at the phenotypic as well as molecular level. Of the 21 SSR markers, 15 markers were found to be polymorphic with 88 alleles. Based on phenotypic and biochemical results, 21 genotypes were identified as salinity tolerant, whereas 40 genotypes turned out to be salt susceptible. The present study shows that apart from the established salt tolerant lines, several other landraces like Bonkanta, Morisal, Ghiosh, Patni may be the source of salt tolerant donor in future breeding programs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA