Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(17): 12322-12330, 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37083208

RESUMO

High-throughput photofragmentation studies of thymine and guanine were performed at 257 and 343 nm and for a wide range of ionisation laser intensities. Combining a continuous laser-based thermal desorption source with femtosecond multiphoton ionisation using a 50 kHz repetition rate laser allowed us to produce detailed 2D maps of fragmentation as a function of incident laser intensity. The fragmentation was distinctly soft, the parent ions being at least an order of magnitude more abundant than fragment ions. For thymine there was a single dominant fragmentation channel, which involves consecutive HNCO and CO losses. In contrast, for guanine there were several competing ones, the most probable channel corresponding to CH2N2 loss through opening of the pyrimidine ring. The dependence of parent ion abundance on the ionisation laser intensity showed that at 257 nm the ionisation of thymine is a 1 + 1 resonance enhanced process through its open-shell singlet state.

2.
Molecules ; 28(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37446720

RESUMO

We present UV photofragmentation studies of the structural isomers paracetamol, 3-Pyridinepropionic acid (3-PPIA) and (R)-(-)-2-Phenylglycine. In particular, we utilized a new laser-based thermal desorption source in combination with femtosecond multiphoton ionization at 343 nm and 257 nm. The continuous nature of our molecule source, combined with the 50 kHz repetition rate of the laser, allowed us to perform these experiments at high throughput. In particular, we present detailed laser intensity dependence studies at both wavelengths, producing 2D mass spectra with highly differential information about the underlying fragmentation processes. We show that UV photofragmentation produces highly isomer-specific mass spectra, and assign all major fragmentation pathways observed. The intensity-dependence measurements, furthermore, allowed us to evaluate the appearance intensities for each fragmentation channel, which helped to distinguish competing from consecutive fragmentation pathways.


Assuntos
Lasers , Espectrometria de Massas
3.
Phys Chem Chem Phys ; 23(20): 11596-11610, 2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-33982051

RESUMO

We discuss the formation of weak covalent bonds leading to anionic charge-sharing dimerisation or polymerisation in microscopic cluster environments. The covalent bonding between cluster building blocks is described in terms of coherent charge sharing, conceptualised using a coupled-monomers molecular-orbital model. The model assumes first-order separability of the inter- and intra-monomer bonding structures. Combined with a Hückel-style formalism adapted to weak covalent and solvation interactions, it offers insight into the competition between the two types of forces and illuminates the properties of the inter-monomer orbitals responsible for charge-sharing dimerisation and polymerisation. Under typical conditions, the cumulative effect of solvation obstructs the polymerisation, limiting the size of covalently bound core anions.

4.
J Phys Chem A ; 125(45): 9865-9876, 2021 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-34732045

RESUMO

The structure and spectroscopy of the anion of oxalyl chloride are investigated using photoelectron imaging experiments and ab initio modeling. The photoelectron images, spectra, and angular distributions are obtained at 355 and 532 nm wavelengths. The 355 nm spectrum consists of a band assigned to a transition from the ground state of the anion to the ground state of the neutral. Its onset at ∼1.8 eV corresponds to the adiabatic electron affinity (EA) of oxalyl chloride, in agreement with the coupled-cluster calculations predicting an EA of 1.797 eV. The observed vertical detachment energy, 2.33(4) eV, is also in agreement with the theory predictions. The 532 nm spectrum additionally reveals a sharp onset near the photon-energy limit. This feature is ascribed to autodetachment via a low-energy anionic resonance. The results are discussed in the context of the substitution series, which includes glyoxal, methylglyoxal (single methyl substitution), biacetyl (double methyl substitution), and oxalyl chloride (double chlorine substitution). The EAs and anion detachment energies follow the trend: biacetyl < methylglyoxal < glyoxal ≪ oxalyl chloride. The electron-donating character of the methyl group has a destabilizing effect on the substituted anions, reducing the EA from glyoxal to methylglyoxal to biacetyl. In contrast, the strong electron-withdrawing (inductive) power of Cl lends additional stabilization to the oxalyl chloride anion, resulting in a large (∼1 eV) increase in its detachment energy compared to glyoxal.

5.
J Phys Chem A ; 125(1): 317-326, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33356250

RESUMO

Electron capture by the σ* LUMO of isoxazole triggers the dissociation of the O-N bond and the opening of the ring. Photodetachment of the resulting anion accesses a neutral structure, in which the O· and ·N bond fragments interact through the intact remainder of the molecular ring and via a 3 Å gap created by the bond dissociation. These through-bond and through-space interactions result in a dense manifold of diradical states, including (in the order of increasing energy) a triplet, an open-shell singlet, a closed-shell singlet, and another triplet state. We report photoelectron spectra that reflect partially resolved signatures of these states. Remarkably, the structure of the isoxazole diradical manifold is qualitatively different from that of the analogous system in oxazole. The distinct properties of the two manifolds are explained by using a coupled-fragments molecular-orbital model. Consistent with the past conclusions [Culberson et al. Phys. Chem. Chem. Phys. 2014, 16, 3964-3972], the lingering through-space interactions between the O· and ·C bond fragments in ring-open oxazole are responsible for the relative stabilization of the closed-shell singlet state, which correlates with the ground-state cyclic structure. In contrast, the placement of the N atom in the terminal position within the ring-open structure of isoxazole is the key factor leading to the near degeneracy of the π and σ* orbitals, favoring a triplet-state configuration.

6.
J Phys Chem A ; 124(38): 7768-7775, 2020 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-32852958

RESUMO

We report a photoelectron imaging study of gas-phase deprotonation of isoxazole in which spectroscopic data are compared to the results of electronic structure calculations for the anion products corresponding to each of three possible deprotonation sites. The observed photoelectron spectra are assigned to a mixture of the anion isomers. Deprotonation at the most acidic (C5) and the least acidic (C4) positions yields the respective C5- and C4-isoxazolide anions, while the reaction at the intermediate-acidity C3 site leads to a cleavage of the O-N bond and an opening of the ring in the anion. Following photodetachment, the ground states of neutral C5- and C4-isoxazolyl are assigned to be σ radicals (X2A'), while the ground-state neutral derived from the ring-open C3-anion is a π radical (X2A″). The relative intensities of the spectral bands exhibit sensitivity to the ion source conditions, giving evidence of competing and varying contributions of the dominant C5 and C3, as well as possible C4, deprotonation pathways.

7.
J Phys Chem A ; 123(19): 4158-4167, 2019 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-31017789

RESUMO

Photoelectron spectroscopy of the biacetyl (dimethylglyoxal) anion reveals the properties of the ground singlet and lowest triplet electronic states of the neutral biacetyl (BA) molecule. Due to the broad and congested nature of the singlet transition, which peaks at a vertical detachment energy VDE = 1.12(5) eV, only an upper bound of the adiabatic electron affinity of BA could be determined: EA(BA) < 0.7 eV. A narrower and more structured triplet band peaking at VDE = 3.17(2) eV reveals the adiabatic electron binding energy of the triplet to be 3.05(2) eV. These results are in good agreement with ab initio (coupled-cluster) calculations. The lowest-energy structures of the anion, singlet, and triplet states of biacetyl are characterized by different orientations of the methyl groups within the molecular frame. In the ground singlet state of neutral BA, the methyl torsion is offset by ∼60° compared to that of the anion, while in the triplet the methyl orientation is similar to that of the anion. Photoelectron spectra of the cluster anions reveal that the intermolecular interactions in the homogeneously solvated (BA) n- clusters are significantly stronger than the interactions of BA- with N2O or even of BA- with H2O. To account for these observations, π-π bonded structures of the dimer and trimer anions of biacetyl are proposed based on density-functional theory calculations. The analysis of the proposed structures indicates that the negative charge in the (BA) n- cluster anions, at least in the dimer and the trimer, is significantly delocalized between all BA moieties present and there is a significant degree of covalent bonding within the cluster.

8.
J Chem Phys ; 147(1): 013934, 2017 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-28688447

RESUMO

Using photoelectron imaging spectroscopy, we characterized the anion of methylglyoxal (X2A″ electronic state) and three lowest electronic states of the neutral methylglyoxal molecule: the closed-shell singlet ground state (X1A'), the lowest triplet state (a3A″), and the open-shell singlet state (A1A″). The adiabatic electron affinity (EA) of the ground state, EA(X1A') = 0.87(1) eV, spectroscopically determined for the first time, compares to 1.10(2) eV for unsubstituted glyoxal. The EAs (adiabatic attachment energies) of two excited states of methylglyoxal were also determined: EA(a3A″) = 3.27(2) eV and EA(A1A″) = 3.614(9) eV. The photodetachment of the anion to each of these two states produces the neutral species near the respective structural equilibria; hence, the a3A″ ← X2A″ and A1A″ ← X2A″ photodetachment transitions are dominated by intense peaks at their respective origins. The lowest-energy photodetachment transition, on the other hand, involves significant geometry relaxation in the X1A' state, which corresponds to a 60° internal rotation of the methyl group, compared to the anion structure. Accordingly, the X1A' ← X2A″ transition is characterized as a broad, congested band, whose vertical detachment energy, VDE = 1.20(4) eV, significantly exceeds the adiabatic EA. The experimental results are in excellent agreement with the ab initio predictions using several equation-of-motion methodologies, combined with coupled-cluster theory.

9.
J Am Soc Mass Spectrom ; 34(7): 1538-1542, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37319337

RESUMO

The production of a clean neutral molecular sample is a crucial step in many gas-phase spectroscopy and reaction dynamics experiments investigating neutral species. Unfortunately, conventional methods based on heating cannot be used with most nonvolatile biomolecules due to their thermal instability. In this paper, we demonstrate the application of laser-based thermal desorption (LBTD) to produce neutral molecular plumes of biomolecules such as dipeptides and lipids. Specifically, we report mass spectra of glycylglycine, glycyl-l-alanine, and cholesterol obtained using LBTD vaporization, followed by soft femtosecond multiphoton ionization (fs-MPI) at 400 nm. For all molecules, the signal from the intact precursor ion was observed, highlighting the softness and applicability of the LBTD and fs-MPI approach. In more detail, cholesterol underwent hardly any fragmentation. Both dipeptides fragmented significantly, although mostly through only a single channel, which we attribute to the fs-MPI process.


Assuntos
Terapia a Laser , Lasers , Volatilização , Espectrometria de Massas/métodos , Dipeptídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA