Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Mol Cell Proteomics ; 20: 100050, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33516941

RESUMO

Ubiquitination is a posttranslational protein modification that has been shown to have a range of effects, including regulation of protein function, interaction, localization, and degradation. We have previously shown that the muscle-specific ubiquitin E3 ligase, ASB2ß, is downregulated in models of muscle growth and that overexpression ASB2ß is sufficient to induce muscle atrophy. To gain insight into the effects of increased ASB2ß expression on skeletal muscle mass and function, we used liquid chromatography coupled to tandem mass spectrometry to investigate ASB2ß-mediated changes to the skeletal muscle proteome and ubiquitinome, via a parallel analysis of remnant diGly-modified peptides. The results show that viral vector-mediated ASB2ß overexpression in murine muscles causes progressive muscle atrophy and impairment of force-producing capacity, while ASB2ß knockdown induces mild muscle hypertrophy. ASB2ß-induced muscle atrophy and dysfunction were associated with the early downregulation of mitochondrial and contractile protein abundance and the upregulation of proteins involved in proteasome-mediated protein degradation (including other E3 ligases), protein synthesis, and the cytoskeleton/sarcomere. The overexpression ASB2ß also resulted in marked changes in protein ubiquitination; however, there was no simple relationship between changes in ubiquitination status and protein abundance. To investigate proteins that interact with ASB2ß and, therefore, potential ASB2ß targets, Flag-tagged wild-type ASB2ß, and a mutant ASB2ß lacking the C-terminal SOCS box domain (dSOCS) were immunoprecipitated from C2C12 myotubes and subjected to label-free proteomic analysis to determine the ASB2ß interactome. ASB2ß was found to interact with a range of cytoskeletal and nuclear proteins. When combined with the in vivo ubiquitinomic data, our studies have identified novel putative ASB2ß target substrates that warrant further investigation. These findings provide novel insight into the complexity of proteome and ubiquitinome changes that occur during E3 ligase-mediated skeletal muscle atrophy and dysfunction.


Assuntos
Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Animais , Linhagem Celular , Feminino , Masculino , Camundongos Endogâmicos C57BL , Músculo Esquelético/patologia , Proteoma , Ubiquitinação
2.
FASEB J ; 34(4): 5697-5714, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32141144

RESUMO

Type 2 diabetes (T2D) manifests from inadequate glucose control due to insulin resistance, hypoinsulinemia, and deteriorating pancreatic ß-cell function. The pro-inflammatory factor Activin has been implicated as a positive correlate of severity in T2D patients, and as a negative regulator of glucose uptake by skeletal muscle, and of pancreatic ß-cell phenotype in mice. Accordingly, we sought to determine whether intervention with the Activin antagonist Follistatin can ameliorate the diabetic pathology. Here, we report that an intravenous Follistatin gene delivery intervention with tropism for striated muscle reduced the serum concentrations of Activin B and improved glycemic control in the db/db mouse model of T2D. Treatment reversed the hyperglycemic progression with a corresponding reduction in the percentage of glycated-hemoglobin to levels similar to lean, healthy mice. Follistatin gene delivery promoted insulinemia and abundance of insulin-positive pancreatic ß-cells, even when treatment was administered to mice with advanced diabetes, supporting a mechanism for improved glycemic control associated with maintenance of functional ß-cells. Our data demonstrate that single-dose intravascular Follistatin gene delivery can ameliorate the diabetic progression and improve prognostic markers of disease. These findings are consistent with other observations of Activin-mediated mechanisms exerting deleterious effects in models of obesity and diabetes, and suggest that interventions that attenuate Activin signaling could help further understanding of T2D and the development of novel T2D therapeutics.


Assuntos
Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 2/terapia , Folistatina/genética , Técnicas de Transferência de Genes , Terapia Genética , Controle Glicêmico , Hiperglicemia/terapia , Administração Intravenosa , Animais , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patologia , Folistatina/administração & dosagem , Hiperglicemia/genética , Resistência à Insulina , Camundongos
4.
Traffic ; 13(10): 1429-41, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22762500

RESUMO

Insulin stimulates glucose transport in adipocytes by triggering translocation of GLUT4 glucose transporters to the plasma membrane (PM) and several Rabs including Rab10 have been implicated in this process. To delineate the molecular regulation of this pathway, we conducted a TBC/RabGAP overexpression screen in adipocytes. This identified TBC1D13 as a potent inhibitor of insulin-stimulated GLUT4 translocation without affecting other trafficking pathways. To determine the potential Rab substrate for TBC1D13 we conducted a yeast two-hybrid screen and found that the GTP bound forms of Rabs 1 and 10 specifically interacted with TBC1D13 but not with eight other TBC proteins. Surprisingly, a comprehensive in vitro screen for TBC1D13 GAP activity revealed Rab35 but not Rab10 as a specific substrate. TBC1D13 also displayed in vivo GAP activity towards Rab35. Overexpression of constitutively active Rab35 but not constitutively active Rab10 reversed the block in insulin-stimulated GLUT4 translocation observed with TBC1D13 overexpression. These studies implicate an important role for Rab35 in insulin-stimulated GLUT4 translocation in adipocytes.


Assuntos
Adipócitos/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Proteínas Nucleares/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Células 3T3-L1 , Animais , Proteínas Ativadoras de GTPase/genética , Expressão Gênica , Células HEK293 , Humanos , Insulina/metabolismo , Camundongos , Proteínas Nucleares/genética , Transporte Proteico
5.
Cardiovasc Res ; 118(1): 212-225, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-33576380

RESUMO

AIMS: The glucose-driven enzymatic modification of myocardial proteins by the sugar moiety, ß-N-acetylglucosamine (O-GlcNAc), is increased in pre-clinical models of diabetes, implicating protein O-GlcNAc modification in diabetes-induced heart failure. Our aim was to specifically examine cardiac manipulation of the two regulatory enzymes of this process on the cardiac phenotype, in the presence and absence of diabetes, utilising cardiac-targeted recombinant-adeno-associated viral-vector-6 (rAAV6)-mediated gene delivery. METHODS AND RESULTS: In human myocardium, total protein O-GlcNAc modification was elevated in diabetic relative to non-diabetic patients, and correlated with left ventricular (LV) dysfunction. The impact of rAAV6-delivered O-GlcNAc transferase (rAAV6-OGT, facilitating protein O-GlcNAcylation), O-GlcNAcase (rAAV6-OGA, facilitating de-O-GlcNAcylation), and empty vector (null) were determined in non-diabetic and diabetic mice. In non-diabetic mice, rAAV6-OGT was sufficient to impair LV diastolic function and induce maladaptive cardiac remodelling, including cardiac fibrosis and increased Myh-7 and Nppa pro-hypertrophic gene expression, recapitulating characteristics of diabetic cardiomyopathy. In contrast, rAAV6-OGA (but not rAAV6-OGT) rescued LV diastolic function and adverse cardiac remodelling in diabetic mice. Molecular insights implicated impaired cardiac PI3K(p110α)-Akt signalling as a potential contributing mechanism to the detrimental consequences of rAAV6-OGT in vivo. In contrast, rAAV6-OGA preserved PI3K(p110α)-Akt signalling in diabetic mouse myocardium in vivo and prevented high glucose-induced impairments in mitochondrial respiration in human cardiomyocytes in vitro. CONCLUSION: Maladaptive protein O-GlcNAc modification is evident in human diabetic myocardium, and is a critical regulator of the diabetic heart phenotype. Selective targeting of cardiac protein O-GlcNAcylation to restore physiological O-GlcNAc balance may represent a novel therapeutic approach for diabetes-induced heart failure.


Assuntos
Antígenos de Neoplasias/metabolismo , Cardiomiopatias Diabéticas/enzimologia , Histona Acetiltransferases/metabolismo , Hialuronoglucosaminidase/metabolismo , Miócitos Cardíacos/enzimologia , N-Acetilglucosaminiltransferases/metabolismo , Processamento de Proteína Pós-Traducional , Disfunção Ventricular Esquerda/enzimologia , Função Ventricular Esquerda , Remodelação Ventricular , Idoso , Animais , Antígenos de Neoplasias/genética , Linhagem Celular , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Cardiomiopatias Diabéticas/genética , Cardiomiopatias Diabéticas/patologia , Cardiomiopatias Diabéticas/fisiopatologia , Modelos Animais de Doenças , Feminino , Fibrose , Regulação da Expressão Gênica , Glicosilação , Histona Acetiltransferases/genética , Humanos , Hialuronoglucosaminidase/genética , Masculino , Camundongos , Pessoa de Meia-Idade , Miócitos Cardíacos/patologia , N-Acetilglucosaminiltransferases/genética , Fenótipo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Disfunção Ventricular Esquerda/genética , Disfunção Ventricular Esquerda/patologia , Disfunção Ventricular Esquerda/fisiopatologia
6.
Mol Endocrinol ; 22(12): 2703-15, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18801932

RESUMO

Insulin-stimulated translocation of the glucose transporter GLUT4 to the plasma membrane in muscle and fat cells depends on the phosphatidylinositide 3-kinase/Akt pathway. The downstream target AS160/TBC1D4 is phosphorylated upon insulin stimulation and contains a TBC domain (Tre-2/Bub2/Cdc16) that is present in most Rab guanosine triphosphatase-activating proteins. TBC1D4 associates with GLUT4-containing membranes under basal conditions and dissociates from membranes with insulin. Here we show that the association of TBC1D4 with membranes is required for its inhibitory action on GLUT4 translocation under basal conditions. Whereas the insulin-dependent dissociation of TBC1D4 from membranes was not required for GLUT4 translocation, its phosphorylation was essential. Many agonists that stimulate GLUT4 translocation failed to trigger TBC1D4 translocation to the cytosol, but in most cases these agonists stimulated TBC1D4 phosphorylation at T642, and their effects on GLUT4 translocation were inhibited by overexpression of the TBC1D4 phosphorylation mutant (TBC1D4-4P). We postulate that TBC1D4 acts to impede GLUT4 translocation by disarming a Rab protein found on GLUT4-containing-membranes and that phosphorylation of TBC1D4 per se is sufficient to overcome this effect, allowing GLUT4 translocation to the cell surface to proceed.


Assuntos
Membrana Celular/fisiologia , Proteínas Ativadoras de GTPase/fisiologia , Transportador de Glucose Tipo 4/metabolismo , Células 3T3-L1 , Androstadienos/farmacologia , Animais , Células CHO , Membrana Celular/metabolismo , Células Cultivadas , Cricetinae , Cricetulus , Citosol/efeitos dos fármacos , Citosol/metabolismo , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/metabolismo , Insulina/farmacologia , Camundongos , Fibras Musculares Esqueléticas/efeitos dos fármacos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/fisiologia , Fosforilação/efeitos dos fármacos , Fosforilação/fisiologia , Inibidores de Proteínas Quinases/farmacologia , Estrutura Terciária de Proteína/fisiologia , Transporte Proteico/efeitos dos fármacos , Vesículas Transportadoras/metabolismo , Vesículas Transportadoras/fisiologia , Wortmanina , Proteínas rab de Ligação ao GTP/metabolismo
7.
Diabetes ; 54(9): 2702-11, 2005 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-16123360

RESUMO

Analysis of conventional germ-line or tissue-specific gene manipulation in vivo is potentially confounded by developmental adaptation of animal physiology. We aimed to adapt the technique of in vivo electrotransfer (IVE) to alter local gene expression in skeletal muscle of rodents as a means of investigating the role of specific proteins in glucose metabolism in vivo. We utilized a square-wave electroporator to induce intracellular electrotransfer of DNA constructs injected into rat or mouse muscles and investigated the downstream effects. In initial studies, expression of green fluorescent protein reporter was induced in 53 +/- 10% of muscle fibers peaking at 7 days, and importantly, the electrotransfer procedure itself did not impact upon the expression of stress proteins or our ability to detect a reduction in 2-deoxyglucose tracer uptake by electroporated muscle of high-fat-fed rats during hyperinsulinemic-euglycemic clamp. To demonstrate functional effects of electrotransfer of constructs targeting glucose transporters, we administered vectors encoding GLUT-1 cDNA and GLUT-4 short hairpin RNAs (shRNAs) to rodent muscles. IVE of the GLUT-1 gene resulted in a 57% increase in GLUT-1 protein, accompanied by a proportionate increase in basal 2-deoxyglucose tracer uptake into muscles of starved rats. IVE of vectors expressing two shRNAs for GLUT-4 demonstrated to reduce specific protein expression and 2-deoxyglucose tracer uptake in 3T3-L1 adipocytes into mouse muscle caused a 51% reduction in GLUT-4 protein, associated with attenuated clearance of tracer to muscle after a glucose load. These results confirm that glucose transporter expression is largely rate limiting for glucose uptake in vivo and highlight the utility of IVE for the acute manipulation of muscle gene expression in the study of the role of specific proteins in glucose metabolism.


Assuntos
Glucose/metabolismo , Proteínas Musculares/metabolismo , Animais , Transporte Biológico Ativo , Linhagem Celular , Eletroporação , Regulação da Expressão Gênica , Masculino , Camundongos , Ratos , Ratos Wistar
8.
JCI Insight ; 1(5)2016 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-27182554

RESUMO

The transforming growth factor-ß (TGF-ß) signaling network is a critical regulator of skeletal muscle mass and function and, thus, is an attractive therapeutic target for combating muscle disease, but the underlying mechanisms of action remain undetermined. We report that follistatin-based interventions (which modulate TGF-ß network activity) can promote muscle hypertrophy that ameliorates aging-associated muscle wasting. However, the muscles of old sarcopenic mice demonstrate reduced response to follistatin compared with healthy young-adult musculature. Quantitative proteomic and transcriptomic analyses of young-adult muscles identified a transcription/translation signature elicited by follistatin exposure, which included repression of ankyrin repeat and SOCS box protein 2 (Asb2). Increasing expression of ASB2 reduced muscle mass, thereby demonstrating that Asb2 is a TGF-ß network-responsive negative regulator of muscle mass. In contrast to young-adult muscles, sarcopenic muscles do not exhibit reduced ASB2 abundance with follistatin exposure. Moreover, preventing repression of ASB2 in young-adult muscles diminished follistatin-induced muscle hypertrophy. These findings provide insight into the program of transcription and translation events governing follistatin-mediated adaptation of skeletal muscle attributes and identify Asb2 as a regulator of muscle mass implicated in the potential mechanistic dysfunction between follistatin-mediated muscle growth in young and old muscles.

9.
Methods Enzymol ; 392: 405-19, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15644195

RESUMO

We describe two complementary strategies for preparing DNA-directed RNA interference (ddRNAi) constructs designed to express hpRNA. The first, oligonucleotide assembly (OA), uses a very simple annealing protocol to combine up to 20 short nucleotides. These are then cloned into appropriately designed restriction sites in expression vectors. OA can be used to prepare simple hairpin (hp)-expressing constructs, but we prefer to use the approach to generate longer constructs. The second strategy, long-range cloning (LRC), uses a novel adaptation of long-range PCR protocols. For LRC, entire vectors are amplified with primers that serve to introduce short sequences into plasmids at defined anchor sites during PCR. The LCR strategy has proven highly reliable in our hands for generating simple ddRNAi constructs. Moreover, LCR is likely to prove useful in many situations in which conventional cloning strategies might prove problematic. In combination, OA and LRC can greatly simplify the design and generation of many expression constructs, including constructs for ddRNAi.


Assuntos
DNA/química , Interferência de RNA , Sequência de Bases , Clonagem Molecular , Eletroforese em Gel de Ágar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA