Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
BMC Plant Biol ; 21(1): 121, 2021 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-33639842

RESUMO

BACKGROUND: Transcriptomic studies combined with a well annotated genome have laid the foundations for new understanding of molecular processes. Tools which visualise gene expression patterns have further added to these resources. The manual annotation of the Actinidia chinensis (kiwifruit) genome has resulted in a high quality set of 33,044 genes. Here we investigate gene expression patterns in diverse tissues, visualised in an Electronic Fluorescent Pictograph (eFP) browser, to study the relationship of transcription factor (TF) expression using network analysis. RESULTS: Sixty-one samples covering diverse tissues at different developmental time points were selected for RNA-seq analysis and an eFP browser was generated to visualise this dataset. 2839 TFs representing 57 different classes were identified and named. Network analysis of the TF expression patterns separated TFs into 14 different modules. Two modules consisting of 237 TFs were correlated with floral bud and flower development, a further two modules containing 160 TFs were associated with fruit development and maturation. A single module of 480 TFs was associated with ethylene-induced fruit ripening. Three "hub" genes correlated with flower and fruit development consisted of a HAF-like gene central to gynoecium development, an ERF and a DOF gene. Maturing and ripening hub genes included a KNOX gene that was associated with seed maturation, and a GRAS-like TF. CONCLUSIONS: This study provides an insight into the complexity of the transcriptional control of flower and fruit development, as well as providing a new resource to the plant community. The Actinidia eFP browser is provided in an accessible format that allows researchers to download and work internally.


Assuntos
Actinidia/genética , Redes Reguladoras de Genes , Genes de Plantas , Fatores de Transcrição/genética , Actinidia/crescimento & desenvolvimento , Actinidia/metabolismo , Flores/crescimento & desenvolvimento , Frutas/crescimento & desenvolvimento , Perfilação da Expressão Gênica , RNA de Plantas , RNA-Seq , Navegador
2.
Environ Sci Technol ; 54(19): 12226-12234, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32924461

RESUMO

In a waste management context, predicting the mobility of contaminants is essential. A key issue entails assessing the applicability of current knowledge on adsorption processes to natural systems. Such is the focus herein for nickel in interaction with Callovo-Oxfordian (COx) clay rock, a formation selected in France for possible radioactive waste disposal. The challenge is to link predictive modeling results with the experimental data characterizing the behavior of the labile and naturally occurring Ni fraction by implementing a new simple method. Retention studies on compact systems serve to complete this work. Combined electron microprobe and laser ablation high-resolution inductively coupled plasma mass spectrometry data show that natural Ni (∼39 mg kg-1) is homogeneously distributed within the clay matrix, which corresponds to the main reservoir (∼70%). Data interpretation of desorption tests yields an in situ Kd value of ∼80 L kg-1 and a labile Ni amount of ∼5 mg kg-1, that is, ∼13% of the Ni inventory. Predictive modeling explains the sorption data in considering that only weak clay fraction sites take part in the adsorption. The role of the clay matrix in Ni retention is confirmed by analyzing the Ni-spiked compact COx samples, whereby an increase of the Ni content in the clay fraction is observed following the retention experiment.


Assuntos
Níquel , Resíduos Radioativos , Adsorção , Silicatos de Alumínio , Argila , França , Resíduos Radioativos/análise
3.
BMC Plant Biol ; 15: 304, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26714876

RESUMO

BACKGROUND: Ripening in tomato is predominantly controlled by ethylene, whilst in fruit such as grape, it is predominantly controlled by other hormones. The ripening response of many kiwifruit (Actinidia) species is atypical. The majority of ripening-associated fruit starch hydrolysis, colour change and softening occurs in the apparent absence of ethylene production (Phase 1 ripening) whilst Phase 2 ripening requires autocatalytic ethylene production and is associated with further softening and an increase in aroma volatiles. RESULTS: To dissect the ripening response in the yellow-fleshed kiwifruit A. chinensis ('Hort16A'), a two dimensional developmental stage X ethylene response time study was undertaken. As fruit progressed through maturation and Phase 1 ripening, fruit were treated with different concentrations of propylene and ethylene. At the start of Phase 1 ripening, treated fruit responded to ethylene, and were capable of producing endogenous ethylene. As the fruit progressed through Phase 1 ripening, the fruit became less responsive to ethylene and endogeneous ethylene production was partially repressed. Towards the end of Phase 1 ripening the fruit were again able to produce high levels of ethylene. Progression through Phase 1 ripening coincided with a developmental increase in the expression of the ethylene-unresponsive MADS-box FRUITFUL-like gene (FUL1). The ability to respond to ethylene however coincided with a change in expression of another MADS-box gene SEPALLATA4/RIPENING INHIBITOR-like (SEP4/RIN). The promoter of SEP4/RIN was shown to be transactivated by EIN3-like transcription factors, but unlike tomato, not by SEP4/RIN itself. Transient over-expression of SEP4/RIN in kiwifruit caused an increase in ethylene production. CONCLUSIONS: These results suggest that the non-ethylene/ethylene ripening response observed in kiwifruit is a hybrid of both the tomato and grape ripening progression, with Phase 1 being akin to the RIN/ethylene inhibitory response observed in grape and Phase 2 akin to the RIN-associated autocatalytic ethylene response observed in tomato.


Assuntos
Actinidia/genética , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Actinidia/crescimento & desenvolvimento , Actinidia/metabolismo , Etilenos/metabolismo , Frutas/genética , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Proteínas de Domínio MADS/metabolismo , Proteínas de Plantas/metabolismo
4.
Plant J ; 73(6): 1044-56, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23236986

RESUMO

Flowering plants utilize different floral structures to develop flesh tissue in fruits. Here we show that suppression of the homeologous SEPALLATA1/2-like genes MADS8 and MADS9 in the fleshy fruit apple (Malus x domestica) leads to sepaloid petals and greatly reduced fruit flesh. Immunolabelling of cell-wall epitopes and differential staining showed that the developing hypanthium (from which the apple flesh develops) of MADS8/9-suppressed apple flowers lacks a tissue layer, and the remaining flesh tissue of fully developed apples has considerably smaller cells. From these observations, it is proposed that MADS8 and MADS9 control the development of discrete zones within the hypanthium tissue, and therefore fruit flesh, and also act as foundations for development of different floral organs. At fruit maturity, the MADS8/9-suppressed apples do not ripen in terms of both developmentally controlled ripening characters, such as starch degradation, and ethylene-modulated ripening traits. Transient assays suggest that, like the RIN gene in tomato, the MADS9 gene acts as a transcriptional activator of the ethylene biosynthesis enzyme, 1-aminocyclopropane-1-carboxylate (ACC) synthase 1. The existence of a single class of genes that regulate both flesh formation and ripening provides an evolutionary tool for controlling two critical aspects of fleshy fruit development.


Assuntos
Frutas/fisiologia , Malus/crescimento & desenvolvimento , Malus/genética , Proteínas de Plantas/genética , Parede Celular/imunologia , Parede Celular/metabolismo , DNA Antissenso , Flores/genética , Flores/crescimento & desenvolvimento , Frutas/genética , Frutas/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas , Liases/genética , Liases/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Plantas Geneticamente Modificadas , Regiões Promotoras Genéticas
5.
Mol Genet Genomics ; 289(3): 317-32, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24442277

RESUMO

The DRM1/ARP gene family is increasingly exhibiting associations with stress conditions at the transcript level. Traditionally correlated with dormancy, increases in transcript levels in response to various treatments have also been reported in various species. As alternative transcript splicing is common in stress conditions, the splice variants of AtDRM1 and AtDRM2 were assessed further in this study. A previously undescribed splice variant of AtDRM1 (AtDRM1.6) is introduced in this work. In silico analyses of predicted protein sequence of all splice variants showed that all variants retain the predicted intrinsically disordered nature. Transcriptional studies of AtDRM1 and AtDRM2 in response to a wide range of abiotic, physical and hormonal treatments showed that AtDRM1.6 is differentially regulated at the transcriptional level compared with other splice variants. Promoter analyses demonstrated AtDRM1 light regulation via the upstream promoter sequence.


Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Metiltransferases/genética , Processamento Alternativo , Sequência de Aminoácidos , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Perfilação da Expressão Gênica , Interação Gene-Ambiente , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/genética , Proteínas Intrinsicamente Desordenadas/metabolismo , Luz , Metiltransferases/química , Metiltransferases/metabolismo , Dados de Sequência Molecular , Especificidade de Órgãos , Fenótipo , Regiões Promotoras Genéticas , Tolerância ao Sal/genética , Alinhamento de Sequência , Estresse Fisiológico , Transcrição Gênica
6.
J Exp Bot ; 65(16): 4527-41, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25080453

RESUMO

Fleshy fruits have evolved to be attractive to frugivores in order to enhance seed dispersal, and have become an indispensable part of the human diet. Here we review the recent advances in the understanding of transcriptional regulation of fleshy fruit development and ripening with a focus on tomato. While aspects of fruit development are probably conserved throughout the angiosperms, including the model plant Arabidopsis thaliana, it is shown that the likely orthologues of Arabidopsis genes have distinct functions in fleshy fruits. The model for the study of fleshy fruit development is tomato, because of the availability of single gene mutants and transgenic knock-down lines. In other species, our knowledge is often incomplete or absent. Tomato fruit size and shape are co-determined by transcription factors acting during formation of the ovary. Other transcription factors play a role in fruit chloroplast formation, and upon ripening impact quality aspects such as secondary metabolite content. In tomato, the transcription factors NON-RIPENING (NOR), COLORLESS NON-RIPENING (CNR), and RIPENING INHIBITOR (MADS-RIN) in concert with ethylene signalling regulate ripening, possibly in response to a developmental switch. Additional components include TOMATO AGAMOUS-LIKE1 (TAGL1), APETALA2a (AP2a), and FRUITFULL (FUL1 and FUL2). The links between this highly connected regulatory network and downstream effectors modulating colour, texture, and flavour are still relatively poorly understood. Intertwined with this network is post-transcriptional regulation by fruit-expressed microRNAs targeting several of these transcription factors. This important developmental process is also governed by changes in DNA methylation levels and possibly chromatin remodelling.


Assuntos
Frutas/crescimento & desenvolvimento , Frutas/genética , Solanum lycopersicum/crescimento & desenvolvimento , Solanum lycopersicum/genética , Transcrição Gênica , Frutas/efeitos dos fármacos , Frutas/metabolismo , Solanum lycopersicum/efeitos dos fármacos , Pigmentação/efeitos dos fármacos , Pigmentação/genética , Reguladores de Crescimento de Plantas/farmacologia , Fatores de Transcrição/metabolismo , Transcrição Gênica/efeitos dos fármacos
7.
Funct Plant Biol ; 512024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38687848

RESUMO

Herkogamy is the spatial separation of anthers and stigmas within complete flowers, and is a key floral trait that promotes outcrossing in many angiosperms. The degree of separation between pollen-producing anthers and receptive stigmas has been shown to influence rates of self-pollination amongst plants, with a reduction in herkogamy increasing rates of successful selfing in self-compatible species. Self-pollination is becoming a critical issue in horticultural crops grown in environments where biotic pollinators are limited, absent, or difficult to utilise. In these cases, poor pollination results in reduced yield and misshapen fruit. Whilst there is a growing body of work elucidating the genetic basis of floral organ development, the genetic and environmental control points regulating herkogamy are poorly understood. A better understanding of the developmental and regulatory pathways involved in establishing varying degrees of herkogamy is needed to provide insights into the production of flowers more adept at selfing to produce consistent, high-quality fruit. This review presents our current understanding of herkogamy from a genetics and hormonal perspective.


Assuntos
Flores , Polinização , Flores/genética , Flores/crescimento & desenvolvimento , Magnoliopsida/genética , Magnoliopsida/fisiologia , Regulação da Expressão Gênica de Plantas , Pólen/genética
8.
J Hazard Mater ; 472: 134416, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38703677

RESUMO

High U concentrations (reaching up to 14,850 mg â‹… kg-1), were determined in soils and sediments of a wetland downstream of a former U mine in France. This study aims to identify the origin of radioactive contaminants in the wetland by employing Pb isotope fingerprinting, (234U/238U) disequilibrium, SEM, and SIMS observations. Additionally, information about U and 226Ra transport processes was studied using U-238 series disequilibrium. The results of Pb fingerprinting highlighted inherited material inputs of different U-mines with mainly two types of U-ores: i) pitchblende (UO2), and ii) parsonsite (Pb2(UO2)(PO4)2). Moreover, significant disequilibrium of (230Th/238U) and (226Ra/230Th) activity ratios highlighted the mobility of 238U and 226Ra in the wetland, primarily driven by the water table fluctuations. Finally, this work uncovered a limitation of Pb isotope fingerprinting in the case of parsonsite materials, as the high natural Pb content of this mineral may hide the uranogenic Pb signature in the samples.

9.
Nature ; 449(7160): 356-60, 2007 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-17704763

RESUMO

The circadian clock is essential for coordinating the proper phasing of many important cellular processes. Robust cycling of key clock elements is required to maintain strong circadian oscillations of these clock-controlled outputs. Rhythmic expression of the Arabidopsis thaliana F-box protein ZEITLUPE (ZTL) is necessary to sustain a normal circadian period by controlling the proteasome-dependent degradation of a central clock protein, TIMING OF CAB EXPRESSION 1 (TOC1). ZTL messenger RNA is constitutively expressed, but ZTL protein levels oscillate with a threefold change in amplitude through an unknown mechanism. Here we show that GIGANTEA (GI) is essential to establish and sustain oscillations of ZTL by a direct protein-protein interaction. GI, a large plant-specific protein with a previously undefined molecular role, stabilizes ZTL in vivo. Furthermore, the ZTL-GI interaction is strongly and specifically enhanced by blue light, through the amino-terminal flavin-binding LIGHT, OXYGEN OR VOLTAGE (LOV) domain of ZTL. Mutations within this domain greatly diminish ZTL-GI interactions, leading to strongly reduced ZTL levels. Notably, a C82A mutation in the LOV domain, implicated in the flavin-dependent photochemistry, eliminates blue-light-enhanced binding of GI to ZTL. These data establish ZTL as a blue-light photoreceptor, which facilitates its own stability through a blue-light-enhanced GI interaction. Because the regulation of GI transcription is clock-controlled, consequent GI protein cycling confers a post-translational rhythm on ZTL protein. This mechanism of establishing and sustaining robust oscillations of ZTL results in the high-amplitude TOC1 rhythms necessary for proper clock function.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ritmo Circadiano/fisiologia , Luz , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Cor , Regulação da Expressão Gênica de Plantas , Mutação/genética , Ligação Proteica/efeitos da radiação , Estrutura Terciária de Proteína
10.
PLoS One ; 18(10): e0292608, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37824461

RESUMO

Mineral springs in Massif Central, France can be characterized by higher levels of natural radioactivity in comparison to the background. The biota in these waters is constantly under radiation exposure mainly from the α-emitters of the natural decay chains, with 226Ra in sediments ranging from 21 Bq/g to 43 Bq/g and 222Rn activity concentrations in water up to 4600 Bq/L. This study couples for the first time micro- and nanodosimetric approaches to radioecology by combining GATE and Geant4-DNA to assess the dose rates and DNA damages to microorganisms living in these naturally radioactive ecosystems. It focuses on unicellular eukaryotic microalgae (diatoms) which display an exceptional abundance of teratological forms in the most radioactive mineral springs in Auvergne. Using spherical geometries for the microorganisms and based on γ-spectrometric analyses, we evaluate the impact of the external exposure to 1000 Bq/L 222Rn dissolved in the water and 30 Bq/g 226Ra in the sediments. Our results show that the external dose rates for diatoms are significant (9.7 µGy/h) and comparable to the threshold (10 µGy/h) for the protection of the ecosystems suggested by the literature. In a first attempt of simulating the radiation induced DNA damage on this species, the rate of DNA Double Strand Breaks per day is estimated to 1.11E-04. Our study confirms the significant mutational pressure from natural radioactivity to which microbial biodiversity has been exposed since Earth origin in hydrothermal springs.


Assuntos
Radioatividade , Rádio (Elemento) , Radônio , Radônio/análise , Método de Monte Carlo , Ecossistema , Radiometria , Água , DNA
11.
BMC Plant Biol ; 12: 7, 2012 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-22243694

RESUMO

BACKGROUND: Auxin is an important phytohormone for fleshy fruit development, having been shown to be involved in the initial signal for fertilisation, fruit size through the control of cell division and cell expansion, and ripening related events. There is considerable knowledge of auxin-related genes, mostly from work in model species. With the apple genome now available, it is possible to carry out genomics studies on auxin-related genes to identify genes that may play roles in specific stages of apple fruit development. RESULTS: High amounts of auxin in the seed compared with the fruit cortex were observed in 'Royal Gala' apples, with amounts increasing through fruit development. Injection of exogenous auxin into developing apples at the start of cell expansion caused an increase in cell size. An expression analysis screen of auxin-related genes involved in auxin reception, homeostasis, and transcriptional regulation showed complex patterns of expression in each class of gene. Two mapping populations were phenotyped for fruit size over multiple seasons, and multiple quantitative trait loci (QTLs) were observed. One QTL mapped to a region containing an Auxin Response Factor (ARF106). This gene is expressed during cell division and cell expansion stages, consistent with a potential role in the control of fruit size. CONCLUSIONS: The application of exogenous auxin to apples increased cell expansion, suggesting that endogenous auxin concentrations are at least one of the limiting factors controlling fruit size. The expression analysis of ARF106 linked to a strong QTL for fruit weight suggests that the auxin signal regulating fruit size could partially be modulated through the function of this gene. One class of gene (GH3) removes free auxin by conjugation to amino acids. The lower expression of these GH3 genes during rapid fruit expansion is consistent with the apple maximising auxin concentrations at this point.


Assuntos
Frutas/crescimento & desenvolvimento , Ácidos Indolacéticos/farmacologia , Malus/genética , Locos de Características Quantitativas , Mapeamento Cromossômico , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Genômica , Malus/crescimento & desenvolvimento , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
12.
BMC Plant Biol ; 11: 182, 2011 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-22204446

RESUMO

BACKGROUND: With the advent of high throughput genomic tools, it is now possible to undertake detailed molecular studies of individual species outside traditional model organisms. Combined with a good understanding of physiological processes, these tools allow researchers to explore natural diversity, giving a better understanding of biological mechanisms. Here a detailed study of fruit development from anthesis through to fruit senescence is presented for a non-model organism, kiwifruit, Actinidia chinensis ('Hort16A'). RESULTS: Consistent with previous studies, it was found that many aspects of fruit morphology, growth and development are similar to those of the model fruit tomato, except for a striking difference in fruit ripening progression. The early stages of fruit ripening occur as the fruit is still growing, and many ripening events are not associated with autocatalytic ethylene production (historically associated with respiratory climacteric). Autocatalytic ethylene is produced late in the ripening process as the fruit begins to senesce. CONCLUSION: By aligning A. chinensis fruit development to a phenological scale, this study provides a reference framework for subsequent physiological and genomic studies, and will allow cross comparison across fruit species, leading to a greater understanding of the diversity of fruits found across the plant kingdom.


Assuntos
Actinidia/fisiologia , Frutas/fisiologia , Ácidos/análise , Actinidia/genética , Metabolismo dos Carboidratos , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas , Transcriptoma
13.
Chemosphere ; 279: 130511, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34134400

RESUMO

In this paper, cesium (Cs) accumulation by the saprophytic fungus Lentinula edodes (Shiitake) was investigated to contribute to the elucidation of radiocesium-cycling mechanisms in forest environments. Although the 137Cs in the mushroom bed before culture was bioavailable, the transfer factor (TF) of Cs (133Cs and 137Cs) from the mushroom bed to fruit bodies was low (approximately 1) and the TFs of K (5) and Na (1.5) were higher. Cs and K concentrations in fruit bodies at different maturity stages were almost constant. The concentration ratio of Cs/K is constant in the pileus regardless of the pileus tissues. These results demonstrate that Shiitake non-specifically accumulates Cs while accumulating the essential element K and provide evidence that no selective Cs accumulation (or binding) sites exist within the Shiitake fruit body. Furthermore, the present results show that most accumulated Cs quickly leaches out from the dead fruit body with exposure to water. The leached Cs was largely adsorbable on clay minerals, suggesting that the Shiitake fruit body likely contains Cs in the cation form.


Assuntos
Cogumelos Shiitake , Florestas , Frutas , Água
14.
Hortic Res ; 8(1): 233, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34719690

RESUMO

The Rosaceae family has striking phenotypic diversity and high syntenic conservation. Gillenia trifoliata is sister species to the Maleae tribe of apple and ~1000 other species. Gillenia has many putative ancestral features, such as herb/sub-shrub habit, dry fruit-bearing and nine base chromosomes. This coalescence of ancestral characters in a phylogenetically important species, positions Gillenia as a 'rosetta stone' for translational science within Rosaceae. We present genomic and phenological resources to facilitate the use of Gillenia for this purpose. The Gillenia genome is the first fully annotated chromosome-level assembly with an ancestral genome complement (x = 9), and with it we developed an improved model of the Rosaceae ancestral genome. MADS and NAC gene family analyses revealed genome dynamics correlated with growth and reproduction and we demonstrate how Gillenia can be a negative control for studying fleshy fruit development in Rosaceae.

15.
Chemosphere ; 260: 127541, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32688311

RESUMO

The present study explores the effect of ethylene diamine disuccinic acid (EDDS) and gibberellic acid (GA) application on the phytoextraction of copper and zinc ions by Lolium perenne. When Cu was individually applied, accumulation diminished over time with little translocation from roots to shoots. In contrast, Zn accumulation and damage to roots rapidly increased over 3 days with increase in Zn translocation to shoots. Co-application of Zn to Cu amended treatments enhanced Cu concentration in shoots. For the CuEDDS application, EDDS significantly increased Cu accumulation and the damage to root increased over time, while gibberellic acid applied with Cu and Zn generally lowered metal uptake and decreased cell membrane damage. The application of EDDS and GA-EDDS, by themselves or with Cu and Zn, lowered transpiration and increased translocation, while GA increased transpiration but decreased translocation. EDDS application typically increased metal ion uptake by causing more cell damage, while GA typically lowered the damage and decreased metal uptake even though the transpiration increased over time and plant growth occurred. Furthermore, the behaviour of metal uptake changed over time and, for some treatments, the short-term and long-term response differed greatly. These results show that EDDS can be successfully used in phytoextraction of both Cu and Zn ions by Lolium perenne while GA can resist damage and protect against plant stress.


Assuntos
Biodegradação Ambiental , Etilenodiaminas/química , Giberelinas/química , Lolium/metabolismo , Poluentes do Solo/metabolismo , Transporte Biológico , Cobre/metabolismo , Etilenos , Íons/metabolismo , Raízes de Plantas/metabolismo , Succinatos/metabolismo , Zinco/metabolismo
16.
Heliyon ; 6(9): e04991, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32995644

RESUMO

Among plant responses to environmentally induced stress modulating protein expression appears to be a key stage in inducible signaling. Our study was focused on an innovative strategy to stimulate plant stress resistance, namely, the use of targeted sequences of specific sound frequencies. The influence of acoustic stimulation on plant protein synthesis was investigated. In our study green peas, Pisum sativum, were cultured under hydric stress conditions with targeted acoustic stimulation. Acoustic sequences targeting dehydrins (DHN) which accumulate in plants in response to dehydration were studied. We experimented on pea seeding with two different sequences of sounds: the first one corresponded to DHN cognate protein and the second one was aimed at the DHN consensus sequence. Shoot elongation after pea seed germination was estimated by fresh weight gain studied in the presence of various conditions of exposure to both sequences of sounds. DHN expression in peas was quantified via ELISA tests and Western-blotting by using specific antibodies. A significant increase in fresh weight in peas grown under exposure to the DHN cognate sound sequence was observed, whereas the consensus sound sequence had no effect on growth. Moreover, the 37kDa DHN amount was increased in peas treated with the consensus acoustic sequence. These results suggest that the expression of DHN could be specifically modulated by a designed acoustic stimulus.

17.
BMC Plant Biol ; 9: 141, 2009 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-19943973

RESUMO

BACKGROUND: To investigate the link between the flowering time gene GIGANTEA (GI) and downstream genes, an inducible GI system was developed in Arabidopsis thaliana L. Heynh. Transgenic Arabidopsis plant lines were generated with a steroid-inducible post-translational control system for GI. The gene expression construct consisted of the coding region of the GI protein fused to that of the ligand binding domain of the rat glucocorticoid receptor (GR). This fusion gene was expressed from the constitutive cauliflower mosaic virus 35S promoter and was introduced into plants carrying the gi-2 mutation. Application of the steroid dexamethasone (DEX) was expected to result in activation of the GI-GR protein and its relocation from the cytoplasm to the nucleus. RESULTS: Application of DEX to the transgenic plant lines rescued the late flowering phenotype conferred by the gi-2 mutation. However, despite their delayed flowering in the absence of steroid, the transgenic lines expressed predicted GI downstream genes such as CONSTANS (CO) to relatively high levels. Nevertheless, increased CO and FLOWERING LOCUS T (FT) transcript accumulation was observed in transgenic plants within 8 h of DEX treatment compared to controls which was consistent with promotion of flowering by DEX. Unlike CO and FT, there was no change in the abundance of transcript of two other putative GI downstream genes HEME ACTIVATOR PROTEIN 3A (HAP3A) or TIMING OF CHLOROPHYLL A/B BINDING PROTEIN 1 (TOC1) after DEX application. CONCLUSION: The post-translational activation of GI and promotion of flowering by steroid application supports a nuclear role for GI in the floral transition. Known downstream flowering time genes CO and FT were elevated by DEX treatment, but not other proposed targets HAP3A and TOC1, indicating that the expression of these genes may be less directly regulated by GI.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Dexametasona/farmacologia , Flores/crescimento & desenvolvimento , Regulação da Expressão Gênica de Plantas/efeitos dos fármacos , Animais , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Flores/genética , Flores/metabolismo , Glucocorticoides/farmacologia , Mutagênese Insercional , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Processamento de Proteína Pós-Traducional , RNA de Plantas/genética , Ratos
18.
PLoS One ; 14(5): e0216120, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31083658

RESUMO

The ETYHLENE RESPONSE FACTOR/APETALA2 (ERF/AP2) transcription factors have been shown to control a wide range of developmental and environmental responses in plants. These include hormonal responses to ethylene and Abscisic Acid (ABA) as well as to cold and drought. In Actinidia chinensis (kiwifruit), ripening is unusual: although it is sometimes classed as a climacteric fruit (ethylene-associated ripening), much of fruit ripening occurs independently from autocatalytic ethylene production. Initiation of ripening appears to be strongly developmentally controlled and modulated by low temperature. In this study, fruit treated with different temperatures showed an increase in soluble sugar accumulation, and a corresponding increase in ß-AMYLASE (BAM) genes (predominantly BAM3.2 and BAM9) with lower temperatures. To investigate the potential role of the AP2/ERF gene family in the control of fruit ripening in kiwifruit this family was investigated further. Using the new genome annotation and further genome sequence analysis we identified 226 ERF-like genes, 10 AP2L/RAV-like genes and 32 AP2-like genes. An RNA-seq screen from kiwifruit of different maturities, and following treatment with ethylene and temperatures between 0 and 16°C, revealed 4%, 26% and 18% of the ERF-like genes were upregulated by maturation, ethylene and cold temperatures, respectively. Focusing on the C-REPEAT/DRE BINDING FACTOR (CBF) cold master regulators, nine potential genes were identified based on sequence similarity. Five of these CBF-like genes were found in a copy number variant (CNV) cluster of six genes on chromosome 14. Expression analysis showed that two homeologous genes (ERF41 and ERF180) increased in abundance with cold and ethylene, while the cluster of CNV CBF-like genes had lost the ability to respond to cold and increased only with ethylene, suggesting an evolutionary progression of function of these genes.


Assuntos
Actinidia/genética , Variações do Número de Cópias de DNA/genética , Frutas/genética , Proteínas de Plantas/genética , Temperatura Baixa , Evolução Molecular , Regulação da Expressão Gênica de Plantas/genética , Família Multigênica/genética , Filogenia , Fatores de Transcrição/genética
19.
Int J Genomics ; 2019: 7924383, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31211132

RESUMO

Eggplant (Solanum melongena L.) is an economically and nutritionally important fruit crop of the Solanaceae family, which was domesticated in India and southern China. However, the genome regions subjected to selective sweeps in eggplant remain unknown. In the present study, we performed comparative transcriptome analysis of cultivated and wild eggplant species with emphasis on the selection pattern during domestication. In total, 44,073 (S. sisymbriifolium) to 58,677 (S. melongena cultivar S58) unigenes were generated for the six eggplant accessions with total lengths of 36.6-46 Mb. The orthologous genes were assessed using the ratio of nonsynonymous (K a) to synonymous (K s) nucleotide substitutions to characterize selective patterns during eggplant domestication. We identified 19 genes under positive selection across the phylogeny that were classified into four groups. The gene (OG12205) under positive selection was possibly associated with fruit-related traits in eggplant, which may have resulted from human manipulation. Eight positive selected genes were potentially involved in stress tolerance or disease resistance, suggesting that environmental changes and biotic stresses were important selective pressures in eggplant domestication. Taken together, our results shed light on the effects of artificial and natural selection on the transcriptomes of eggplant and its wild relatives. Identification of the selected genes will facilitate the understanding of genetic architecture of domesticated-related traits and provide resources for resistant breeding in eggplant.

20.
Plant Sci ; 276: 63-72, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30348329

RESUMO

Fruits have been traditionally classified into two categories based on their capacity to produce and respond to ethylene during ripening. Fruits whose ripening is associated to a peak of ethylene production and a respiration burst are referred to as climacteric, while those that are not are referred to as non-climacteric. However, an increasing body of literature supports an important role for ethylene in the ripening of both climacteric and non-climacteric fruits. Genome and transcriptomic data have become available across a variety of fruits and we leverage these data to compare the structure and transcriptional regulation of the ethylene receptors and related proteins. Through the analysis of four economically important fruits, two climacteric (tomato and apple), and two non-climacteric (grape and citrus), this review compares the structure and transcriptional regulation of the ethylene receptors and related proteins in both types of fruit, establishing a basis for the annotation of ethylene-related genes. This analysis reveals two interesting differences between climacteric and non-climacteric fruit: i) a higher number of ETR genes are found in climacteric fruits, and ii) non-climacteric fruits are characterized by an earlier ETR expression peak relative to sugar accumulation.


Assuntos
Citrus/genética , Malus/genética , Proteínas de Plantas/genética , Receptores de Superfície Celular/genética , Transdução de Sinais , Solanum lycopersicum/genética , Vitis/genética , Citrus/fisiologia , Etilenos/metabolismo , Frutas/genética , Frutas/fisiologia , Solanum lycopersicum/fisiologia , Malus/fisiologia , Reguladores de Crescimento de Plantas/metabolismo , Vitis/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA