Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Annu Rev Biochem ; 89: 309-332, 2020 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-32186918

RESUMO

Clustered regularly interspaced short palindromic repeats (CRISPR) together with their accompanying cas (CRISPR-associated) genes are found frequently in bacteria and archaea, serving to defend against invading foreign DNA, such as viral genomes. CRISPR-Cas systems provide a uniquely powerful defense because they can adapt to newly encountered genomes. The adaptive ability of these systems has been exploited, leading to their development as highly effective tools for genome editing. The widespread use of CRISPR-Cas systems has driven a need for methods to control their activity. This review focuses on anti-CRISPRs (Acrs), proteins produced by viruses and other mobile genetic elements that can potently inhibit CRISPR-Cas systems. Discovered in 2013, there are now 54 distinct families of these proteins described, and the functional mechanisms of more than a dozen have been characterized in molecular detail. The investigation of Acrs is leading to a variety of practical applications and is providing exciting new insight into the biology of CRISPR-Cas systems.


Assuntos
Sistemas CRISPR-Cas/efeitos dos fármacos , Edição de Genes/métodos , Bibliotecas de Moléculas Pequenas/farmacologia , Proteínas Virais/genética , Vírus/genética , Archaea/genética , Archaea/imunologia , Archaea/virologia , Bactérias/genética , Bactérias/imunologia , Bactérias/virologia , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Coevolução Biológica , Proteínas Associadas a CRISPR/antagonistas & inibidores , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , DNA/antagonistas & inibidores , DNA/química , DNA/genética , DNA/metabolismo , Clivagem do DNA/efeitos dos fármacos , Endodesoxirribonucleases/antagonistas & inibidores , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Humanos , Modelos Moleculares , Família Multigênica , Ligação Proteica , Multimerização Proteica/efeitos dos fármacos , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/metabolismo , Proteínas Virais/química , Proteínas Virais/metabolismo , Proteínas Virais/farmacologia , Vírus/metabolismo , Vírus/patogenicidade
2.
Cell ; 178(6): 1452-1464.e13, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31474367

RESUMO

Phages express anti-CRISPR (Acr) proteins to inhibit CRISPR-Cas systems that would otherwise destroy their genomes. Most acr genes are located adjacent to anti-CRISPR-associated (aca) genes, which encode proteins with a helix-turn-helix DNA-binding motif. The conservation of aca genes has served as a signpost for the identification of acr genes, but the function of the proteins encoded by these genes has not been investigated. Here we reveal that an acr-associated promoter drives high levels of acr transcription immediately after phage DNA injection and that Aca proteins subsequently repress this transcription. Without Aca activity, this strong transcription is lethal to a phage. Our results demonstrate how sufficient levels of Acr proteins accumulate early in the infection process to inhibit existing CRISPR-Cas complexes in the host cell. They also imply that the conserved role of Aca proteins is to mitigate the deleterious effects of strong constitutive transcription from acr promoters.


Assuntos
Bacteriófagos/genética , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Proteínas Virais/genética , Proteínas Associadas a CRISPR/genética , Escherichia coli/virologia , Regiões Promotoras Genéticas/genética , Pseudomonas aeruginosa/virologia , Fatores de Transcrição/genética , Transcrição Gênica
3.
Cell ; 170(6): 1224-1233.e15, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28844692

RESUMO

CRISPR-Cas9 proteins function within bacterial immune systems to target and destroy invasive DNA and have been harnessed as a robust technology for genome editing. Small bacteriophage-encoded anti-CRISPR proteins (Acrs) can inactivate Cas9, providing an efficient off switch for Cas9-based applications. Here, we show that two Acrs, AcrIIC1 and AcrIIC3, inhibit Cas9 by distinct strategies. AcrIIC1 is a broad-spectrum Cas9 inhibitor that prevents DNA cutting by multiple divergent Cas9 orthologs through direct binding to the conserved HNH catalytic domain of Cas9. A crystal structure of an AcrIIC1-Cas9 HNH domain complex shows how AcrIIC1 traps Cas9 in a DNA-bound but catalytically inactive state. By contrast, AcrIIC3 blocks activity of a single Cas9 ortholog and induces Cas9 dimerization while preventing binding to the target DNA. These two orthogonal mechanisms allow for separate control of Cas9 target binding and cleavage and suggest applications to allow DNA binding while preventing DNA cutting by Cas9.


Assuntos
Sistemas CRISPR-Cas , Endonucleases/antagonistas & inibidores , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo , Endonucleases/química , Endonucleases/genética , Endonucleases/metabolismo , Evolução Molecular , Células HEK293 , Humanos , Domínios Proteicos , Alinhamento de Sequência
4.
Cell ; 169(1): 47-57.e11, 2017 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-28340349

RESUMO

Genetic conflict between viruses and their hosts drives evolution and genetic innovation. Prokaryotes evolved CRISPR-mediated adaptive immune systems for protection from viral infection, and viruses have evolved diverse anti-CRISPR (Acr) proteins that subvert these immune systems. The adaptive immune system in Pseudomonas aeruginosa (type I-F) relies on a 350 kDa CRISPR RNA (crRNA)-guided surveillance complex (Csy complex) to bind foreign DNA and recruit a trans-acting nuclease for target degradation. Here, we report the cryo-electron microscopy (cryo-EM) structure of the Csy complex bound to two different Acr proteins, AcrF1 and AcrF2, at an average resolution of 3.4 Å. The structure explains the molecular mechanism for immune system suppression, and structure-guided mutations show that the Acr proteins bind to residues essential for crRNA-mediated detection of DNA. Collectively, these data provide a snapshot of an ongoing molecular arms race between viral suppressors and the immune system they target.


Assuntos
Bacteriófagos/química , Proteínas Associadas a CRISPR/química , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/virologia , RNA Bacteriano/química , Proteínas Virais/química , Bacteriófagos/classificação , Bacteriófagos/genética , Microscopia Crioeletrônica , Cristalografia por Raios X , Vigilância Imunológica , Modelos Moleculares , Pseudomonas aeruginosa/genética , RNA Bacteriano/metabolismo , RNA Bacteriano/ultraestrutura , Proteínas Virais/ultraestrutura
5.
Cell ; 167(7): 1829-1838.e9, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27984730

RESUMO

CRISPR-Cas9 technology would be enhanced by the ability to inhibit Cas9 function spatially, temporally, or conditionally. Previously, we discovered small proteins encoded by bacteriophages that inhibit the CRISPR-Cas systems of their host bacteria. These "anti-CRISPRs" were specific to type I CRISPR-Cas systems that do not employ the Cas9 protein. We posited that nature would also yield Cas9 inhibitors in response to the evolutionary arms race between bacteriophages and their hosts. Here, we report the discovery of three distinct families of anti-CRISPRs that specifically inhibit the CRISPR-Cas9 system of Neisseria meningitidis. We show that these proteins bind directly to N. meningitidis Cas9 (NmeCas9) and can be used as potent inhibitors of genome editing by this system in human cells. These anti-CRISPR proteins now enable "off-switches" for CRISPR-Cas9 activity and provide a genetically encodable means to inhibit CRISPR-Cas9 genome editing in eukaryotes. VIDEO ABSTRACT.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Neisseria meningitidis/genética , Neisseria meningitidis/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Linhagem Celular , Humanos
6.
Nature ; 632(8024): 375-382, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38961300

RESUMO

In biological systems, the activities of macromolecular complexes must sometimes be turned off. Thus, a wide variety of protein inhibitors has evolved for this purpose. These inhibitors function through diverse mechanisms, including steric blocking of crucial interactions, enzymatic modification of key residues or substrates, and perturbation of post-translational modifications1. Anti-CRISPRs-proteins that block the activity of CRISPR-Cas systems-are one of the largest groups of inhibitors described, with more than 90 families that function through diverse mechanisms2-4. Here, we characterize the anti-CRISPR AcrIF25, and we show that it inhibits the type I-F CRISPR-Cas system by pulling apart the fully assembled effector complex. AcrIF25 binds to the predominant CRISPR RNA-binding components of this complex, comprising six Cas7 subunits, and strips them from the RNA. Structural and biochemical studies indicate that AcrIF25 removes one Cas7 subunit at a time, starting at one end of the complex. Notably, this feat is achieved with no apparent enzymatic activity. To our knowledge, AcrIF25 is the first example of a protein that disassembles a large and stable macromolecular complex in the absence of an external energy source. As such, AcrIF25 establishes a paradigm for macromolecular complex inhibitors that may be used for biotechnological applications.


Assuntos
Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Substâncias Macromoleculares , Proteínas Virais , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Proteínas Associadas a CRISPR/metabolismo , Proteínas Associadas a CRISPR/química , Modelos Moleculares , Ligação Proteica , Subunidades Proteicas/metabolismo , Subunidades Proteicas/química , Substâncias Macromoleculares/química , Substâncias Macromoleculares/metabolismo , Biotecnologia/tendências , Bacteriófagos , Proteínas Virais/metabolismo
7.
Mol Cell ; 81(3): 571-583.e6, 2021 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-33412111

RESUMO

The arms race between bacteria and phages has led to the evolution of diverse anti-phage defenses, several of which are controlled by quorum-sensing pathways. In this work, we characterize a quorum-sensing anti-activator protein, Aqs1, found in Pseudomonas phage DMS3. We show that Aqs1 inhibits LasR, the master regulator of quorum sensing, and present the crystal structure of the Aqs1-LasR complex. The 69-residue Aqs1 protein also inhibits PilB, the type IV pilus assembly ATPase protein, which blocks superinfection by phages that require the pilus for infection. This study highlights the remarkable ability of small phage proteins to bind multiple host proteins and disrupt key biological pathways. As quorum sensing influences various anti-phage defenses, Aqs1 provides a mechanism by which infecting phages might simultaneously dampen multiple defenses. Because quorum-sensing systems are broadly distributed across bacteria, this mechanism of phage counter-defense may play an important role in phage-host evolutionary dynamics.


Assuntos
Proteínas de Bactérias/metabolismo , Bacteriófagos/metabolismo , Pseudomonas aeruginosa/metabolismo , Percepção de Quorum , Transativadores/metabolismo , Proteínas Virais/metabolismo , Proteínas de Bactérias/genética , Bacteriófagos/genética , Bacteriófagos/patogenicidade , Fímbrias Bacterianas/metabolismo , Interações Hospedeiro-Patógeno , Oxirredutases/genética , Oxirredutases/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crescimento & desenvolvimento , Piocianina/metabolismo , Transativadores/genética , Proteínas Virais/genética
8.
Proc Natl Acad Sci U S A ; 120(11): e2208695120, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36888656

RESUMO

Recent studies show that antiviral systems are remarkably conserved from bacteria to mammals, demonstrating that unique insights into these systems can be gained by studying microbial organisms. Unlike in bacteria, however, where phage infection can be lethal, no cytotoxic viral consequence is known in the budding yeast Saccharomyces cerevisiae even though it is chronically infected with a double-stranded RNA mycovirus called L-A. This remains the case despite the previous identification of conserved antiviral systems that limit L-A replication. Here, we show that these systems collaborate to prevent rampant L-A replication, which causes lethality in cells grown at high temperature. Exploiting this discovery, we use an overexpression screen to identify antiviral functions for the yeast homologs of polyA-binding protein (PABPC1) and the La-domain containing protein Larp1, which are both involved in viral innate immunity in humans. Using a complementary loss of function approach, we identify new antiviral functions for the conserved RNA exonucleases REX2 and MYG1; the SAGA and PAF1 chromatin regulatory complexes; and HSF1, the master transcriptional regulator of the proteostatic stress response. Through investigation of these antiviral systems, we show that L-A pathogenesis is associated with an activated proteostatic stress response and the accumulation of cytotoxic protein aggregates. These findings identify proteotoxic stress as an underlying cause of L-A pathogenesis and further advance yeast as a powerful model system for the discovery and characterization of conserved antiviral systems.


Assuntos
Micovírus , Proteínas de Saccharomyces cerevisiae , Humanos , Animais , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Antivirais , Micovírus/genética , Micovírus/metabolismo , RNA de Cadeia Dupla , Imunidade Inata , Mamíferos/genética , Fatores de Transcrição/genética , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
9.
J Bacteriol ; 205(6): e0002923, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37260386

RESUMO

Most Pseudomonas aeruginosa strains produce bacteriocins derived from contractile or noncontractile phage tails known as R- and F-type pyocins, respectively. These bacteriocins possess strain-specific bactericidal activity against P. aeruginosa and likely increase evolutionary fitness through intraspecies competition. R-type pyocins have been studied extensively and show promise as alternatives to antibiotics. Although they have similar therapeutic potential, experimental studies on F-type pyocins are limited. Here, we provide a bioinformatic and experimental investigation of F-type pyocins. We introduce a systematic naming scheme for genes found in R- and F-type pyocin operons and identify 15 genes invariably found in strains producing F-type pyocins. Five proteins encoded at the 3' end of the F-type pyocin cluster are divergent in sequence and likely determine bactericidal specificity. We use sequence similarities among these proteins to define eleven distinct F-type pyocin groups, five of which had not been previously described. The five genes encoding the variable proteins associate in two modules that have clearly reassorted independently during the evolution of these operons. These proteins are considerably more diverse than the specificity-determining tail fibers of R-type pyocins, suggesting that F-type pyocins may have emerged earlier. Experimental studies on six F-type pyocin groups show that each displays a distinct spectrum of bactericidal activity. This activity is strongly influenced by the lipopolysaccharide O-antigen type, but other factors also play a role. F-type pyocins appear to kill as efficiently as R-type pyocins. These studies set the stage for the development of F-type pyocins as antibacterial therapeutics. IMPORTANCE Pseudomonas aeruginosa is an opportunistic pathogen that causes antibiotic-resistant infections with high mortality rates, particularly in immunocompromised individuals and cystic fibrosis patients. Due to the increasing frequency of multidrug-resistant P. aeruginosa infections, there is great need for the development of alternative therapeutics. In this study, we investigate one such potential therapeutic: F-type pyocins, which are bacteriocins naturally produced by P. aeruginosa that resemble noncontractile phage tails. We show that they are potent killers of P. aeruginosa and identify their probable bactericidal specificity determinants, which opens up the possibility of engineering them to precisely target strains of pathogenic bacteria. The resemblance of F-type pyocins to well-characterized phage tails will greatly facilitate their development into effective antibacterials.


Assuntos
Bacteriocinas , Bacteriófagos , Humanos , Piocinas/farmacologia , Pseudomonas aeruginosa/metabolismo , Bacteriocinas/genética , Bacteriocinas/farmacologia , Bacteriocinas/metabolismo , Antibacterianos/farmacologia , Antibacterianos/metabolismo , Bacteriófagos/metabolismo
10.
Nucleic Acids Res ; 49(6): 3381-3393, 2021 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-33660777

RESUMO

Phages and other mobile genetic elements express anti-CRISPR proteins (Acrs) to protect their genomes from destruction by CRISPR-Cas systems. Acrs usually block the ability of CRISPR-Cas systems to bind or cleave their nucleic acid substrates. Here, we investigate an unusual Acr, AcrIF9, that induces a gain-of-function to a type I-F CRISPR-Cas (Csy) complex, causing it to bind strongly to DNA that lacks both a PAM sequence and sequence complementarity. We show that specific and non-specific dsDNA compete for the same site on the Csy:AcrIF9 complex with rapid exchange, but specific ssDNA appears to still bind through complementarity to the CRISPR RNA. Induction of non-specific DNA-binding is a shared property of diverse AcrIF9 homologues. Substitution of a conserved positively charged surface on AcrIF9 abrogated non-specific dsDNA-binding of the Csy:AcrIF9 complex, but specific dsDNA binding was maintained. AcrIF9 mutants with impaired non-specific dsDNA binding activity in vitro displayed a reduced ability to inhibit CRISPR-Cas activity in vivo. We conclude that misdirecting the CRISPR-Cas complex to bind non-specific DNA is a key component of the inhibitory mechanism of AcrIF9. This inhibitory mechanism is distinct from a previously characterized anti-CRISPR, AcrIF1, that sterically blocks DNA-binding, even though AcrIF1and AcrIF9 bind to the same site on the Csy complex.


Assuntos
Sistemas CRISPR-Cas , DNA/metabolismo , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , DNA/química , DNA de Cadeia Simples/metabolismo , Mutagênese , Ligação Proteica , Proteínas/química , Proteínas/genética , Proteínas/metabolismo
11.
J Bacteriol ; 203(3)2021 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-33139482

RESUMO

To initiate their life cycle, phages must specifically bind to the surface of their bacterial hosts. Long-tailed phages often interact with the cell surface using fibers, which are elongated intertwined trimeric structures. The folding and assembly of these complex structures generally requires the activity of an intra- or intermolecular chaperone protein. Tail fiber assembly (Tfa) proteins are a very large family of proteins that serve as chaperones for fiber folding in a wide variety of phages that infect diverse species. A recent structural study showed that the Tfa protein from Escherichia coli phage Mu (TfaMu) mediates fiber folding and stays bound to the distal tip of the fiber, becoming a component of the mature phage particle. This finding revealed the potential for TfaMu to also play a role in cell surface binding. To address this issue, we have here shown that TfaMu binds to lipopolysaccharide (LPS), the cell surface receptor of phage Mu, with a similar strength as to the fiber itself. Furthermore, we have found that TfaMu and the Tfa protein from E. coli phage P2 bind LPS with distinct specificities that mirror the host specificity of these two phages. By comparing the sequences of these two proteins, which are 93% identical, we identified a single residue that is responsible for their distinct LPS-binding behaviors. Although we have not yet found conditions under which Tfa proteins influence host range, the potential for such a role is now evident, as we have demonstrated their ability to bind LPS in a strain-specific manner.IMPORTANCE With the growing interest in using phages to combat antibiotic-resistant infections or manipulate the human microbiome, establishing approaches for the modification of phage host range has become an important research topic. Tfa proteins are a large family of proteins known previously to function as chaperones for the folding of phage fibers, which are crucial determinants of host range for long-tailed phages. Here, we reveal that some Tfa proteins are bi-functional, with the additional activity of binding to LPS, the surface binding receptor for many phages. This discovery opens up new potential avenues for altering phage host range through engineering of the surface binding specificity of Tfa proteins.


Assuntos
Bactérias/virologia , Fenômenos Fisiológicos Bacterianos , Bacteriófagos/fisiologia , Especificidade de Hospedeiro/fisiologia , Bactérias/genética , Bacteriófagos/genética , Escherichia coli , Regulação Bacteriana da Expressão Gênica , Humanos , Lipopolissacarídeos , Ligação Proteica , Proteínas Virais/metabolismo , Montagem de Vírus , Ligação Viral
12.
Nature ; 526(7571): 136-9, 2015 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-26416740

RESUMO

The battle for survival between bacteria and the viruses that infect them (phages) has led to the evolution of many bacterial defence systems and phage-encoded antagonists of these systems. Clustered regularly interspaced short palindromic repeats (CRISPR) and the CRISPR-associated (cas) genes comprise an adaptive immune system that is one of the most widespread means by which bacteria defend themselves against phages. We identified the first examples of proteins produced by phages that inhibit a CRISPR-Cas system. Here we performed biochemical and in vivo investigations of three of these anti-CRISPR proteins, and show that each inhibits CRISPR-Cas activity through a distinct mechanism. Two block the DNA-binding activity of the CRISPR-Cas complex, yet do this by interacting with different protein subunits, and using steric or non-steric modes of inhibition. The third anti-CRISPR protein operates by binding to the Cas3 helicase-nuclease and preventing its recruitment to the DNA-bound CRISPR-Cas complex. In vivo, this anti-CRISPR can convert the CRISPR-Cas system into a transcriptional repressor, providing the first example-to our knowledge-of modulation of CRISPR-Cas activity by a protein interactor. The diverse sequences and mechanisms of action of these anti-CRISPR proteins imply an independent evolution, and foreshadow the existence of other means by which proteins may alter CRISPR-Cas function.


Assuntos
Bactérias/metabolismo , Bactérias/virologia , Bacteriófagos/metabolismo , Proteínas Associadas a CRISPR/antagonistas & inibidores , Sistemas CRISPR-Cas/fisiologia , Evolução Molecular , Proteínas Virais/metabolismo , Proteínas Associadas a CRISPR/metabolismo , Sistemas CRISPR-Cas/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , DNA Helicases/antagonistas & inibidores , DNA Helicases/metabolismo , DNA Viral/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo , Endonucleases/antagonistas & inibidores , Endonucleases/metabolismo , Ligação Proteica , Subunidades Proteicas/antagonistas & inibidores , Subunidades Proteicas/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Especificidade por Substrato
13.
Nature ; 493(7432): 429-32, 2013 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-23242138

RESUMO

A widespread system used by bacteria for protection against potentially dangerous foreign DNA molecules consists of the clustered regularly interspaced short palindromic repeats (CRISPR) coupled with cas (CRISPR-associated) genes. Similar to RNA interference in eukaryotes, these CRISPR/Cas systems use small RNAs for sequence-specific detection and neutralization of invading genomes. Here we describe the first examples of genes that mediate the inhibition of a CRISPR/Cas system. Five distinct 'anti-CRISPR' genes were found in the genomes of bacteriophages infecting Pseudomonas aeruginosa. Mutation of the anti-CRISPR gene of a phage rendered it unable to infect bacteria with a functional CRISPR/Cas system, and the addition of the same gene to the genome of a CRISPR/Cas-targeted phage allowed it to evade the CRISPR/Cas system. Phage-encoded anti-CRISPR genes may represent a widespread mechanism for phages to overcome the highly prevalent CRISPR/Cas systems. The existence of anti-CRISPR genes presents new avenues for the elucidation of CRISPR/Cas functional mechanisms and provides new insight into the co-evolution of phages and bacteria.


Assuntos
Bacteriófagos/genética , Genes Bacterianos/genética , Genes Virais/genética , Sequências Repetidas Invertidas/genética , Pseudomonas aeruginosa/imunologia , Pseudomonas aeruginosa/virologia , Evolução Biológica , Regulação Viral da Expressão Gênica , Genoma Viral/genética , Dados de Sequência Molecular , Pseudomonas aeruginosa/genética
14.
Proc Natl Acad Sci U S A ; 113(36): 10174-9, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27555589

RESUMO

Contractile phage tails are powerful cell puncturing nanomachines that have been co-opted by bacteria for self-defense against both bacteria and eukaryotic cells. The tail of phage T4 has long served as the paradigm for understanding contractile tail-like systems despite its greater complexity compared with other contractile-tailed phages. Here, we present a detailed investigation of the assembly of a "simple" contractile-tailed phage baseplate, that of Escherichia coli phage Mu. By coexpressing various combinations of putative Mu baseplate proteins, we defined the required components of this baseplate and delineated its assembly pathway. We show that the Mu baseplate is constructed through the independent assembly of wedges that are organized around a central hub complex. The Mu wedges are comprised of only three protein subunits rather than the seven found in the equivalent structure in T4. Through extensive bioinformatic analyses, we found that homologs of the essential components of the Mu baseplate can be identified in the majority of contractile-tailed phages and prophages. No T4-like prophages were identified. The conserved simple baseplate components were also found in contractile tail-derived bacterial apparatuses, such as type VI secretion systems, Photorhabdus virulence cassettes, and R-type tailocins. Our work highlights the evolutionary connections and similarities in the biochemical behavior of phage Mu wedge components and the TssF and TssG proteins of the type VI secretion system. In addition, we demonstrate the importance of the Mu baseplate as a model system for understanding bacterial phage tail-derived systems.


Assuntos
Bacteriófago mu/genética , Sistemas de Secreção Tipo VI/genética , Proteínas da Cauda Viral/genética , Vírion/genética , Montagem de Vírus/genética , Bacillus subtilis/virologia , Bacteriófago P2/genética , Bacteriófago P2/metabolismo , Bacteriófago P2/ultraestrutura , Bacteriófago T4/genética , Bacteriófago T4/metabolismo , Bacteriófago T4/ultraestrutura , Bacteriófago mu/metabolismo , Bacteriófago mu/ultraestrutura , Biologia Computacional , Escherichia coli/virologia , Expressão Gênica , Sintenia , Sistemas de Secreção Tipo VI/metabolismo , Proteínas da Cauda Viral/metabolismo , Vírion/metabolismo , Vírion/ultraestrutura
15.
J Bacteriol ; 200(22)2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-30150232

RESUMO

The viruses that infect bacteria, known as phages, play a critical role in controlling bacterial populations in many diverse environments, including the human body. This control stems not only from phages killing bacteria but also from the formation of lysogens. In this state, the phage replication cycle is suppressed, and the phage genome is maintained in the bacterial cell in a form known as a prophage. Prophages often carry genes that benefit the host bacterial cell, since increasing the survival of the host cell by extension also increases the fitness of the prophage. These highly diverse and beneficial phage genes, which are not required for the life cycle of the phage itself, have been referred to as "morons," as their presence adds "more on" the phage genome in which they are found. While individual phage morons have been shown to contribute to bacterial virulence by a number of different mechanisms, there have been no systematic investigations of their activities. Using a library of phages that infect two different clinical isolates of P. aeruginosa, PAO1 and PA14, we compared the phenotypes imparted by the expression of individual phage morons. We identified morons that inhibit twitching and swimming motilities and observed an inhibition of the production of virulence factors such as rhamnolipids and elastase. This study demonstrates the scope of phage-mediated phenotypic changes and provides a framework for future studies of phage morons.IMPORTANCE Environmental and clinical isolates of the bacterium Pseudomonas aeruginosa frequently contain viruses known as prophages. These prophages can alter the virulence of their bacterial hosts through the expression of nonessential genes known as "morons." In this study, we identified morons in a group of Pseudomonas aeruginosa phages and characterized the effects of their expression on bacterial behaviors. We found that many morons confer selective advantages for the bacterial host, some of which correlate with increased bacterial virulence. This work highlights the symbiotic relationship between bacteria and prophages and illustrates how phage morons can help bacteria adapt to different selective pressures and contribute to human diseases.


Assuntos
Genes Virais , Fenótipo , Prófagos/genética , Fagos de Pseudomonas/genética , Pseudomonas aeruginosa/virologia , Fatores de Virulência/genética , Animais , Drosophila melanogaster/microbiologia , Interações Hospedeiro-Patógeno , Lisogenia , Infecções por Pseudomonas/microbiologia , Fagos de Pseudomonas/fisiologia , Pseudomonas aeruginosa/patogenicidade , Simbiose , Virulência
16.
Nature ; 541(7638): 466-467, 2017 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-28099417
17.
Nucleic Acids Res ; 43(22): 10848-60, 2015 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-26586803

RESUMO

CRISPR immunity depends on acquisition of fragments of foreign DNA into CRISPR arrays. For type I-E CRISPR-Cas systems two modes of spacer acquisition, naïve and primed adaptation, were described. Naïve adaptation requires just two most conserved Cas1 and Cas2 proteins; it leads to spacer acquisition from both foreign and bacterial DNA and results in multiple spacers incapable of immune response. Primed adaptation requires all Cas proteins and a CRISPR RNA recognizing a partially matching target. It leads to selective acquisition of spacers from DNA molecules recognized by priming CRISPR RNA, with most spacers capable of protecting the host. Here, we studied spacer acquisition by a type I-F CRISPR-Cas system. We observe both naïve and primed adaptation. Both processes require not just Cas1 and Cas2, but also intact Csy complex and CRISPR RNA. Primed adaptation shows a gradient of acquisition efficiency as a function of distance from the priming site and a strand bias that is consistent with existence of single-stranded adaption intermediates. The results provide new insights into the mechanism of spacer acquisition and illustrate surprising mechanistic diversity of related CRISPR-Cas systems.


Assuntos
Sistemas CRISPR-Cas , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Adaptação Fisiológica , Bacteriófagos/genética , Proteínas Associadas a CRISPR/metabolismo , DNA/metabolismo , Desoxirribonuclease I/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Genoma Bacteriano , Plasmídeos/genética , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/virologia , RNA Bacteriano/metabolismo , Proteínas Virais/metabolismo
18.
Proc Natl Acad Sci U S A ; 111(16): 6022-7, 2014 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-24711378

RESUMO

The genome packaging reactions of tailed bacteriophages and herpes viruses require the activity of a terminase enzyme, which is comprised of large and small subunits. Phage genomes are replicated as linear concatemers composed of multiple copies of the genome joined end to end. As the terminase enzyme packages the genome into the phage capsid, it cleaves the DNA into single genome-length units. In this work, we show that the phage HK97 HNH protein, gp74, is required for the specific endonuclease activity of HK97 terminase and is essential for phage head morphogenesis. HNH proteins are a very common family of proteins generally associated with nuclease activity that are found in all kingdoms of life. We show that the activity of gp74 in terminase-mediated cleavage of the phage cos site relies on the presence of an HNH motif active-site residue, and that the large subunit of HK97 terminase physically interacts with gp74. Bioinformatic analysis reveals that the role of HNH proteins in terminase function is widespread among long-tailed phages and is uniquely required for the activity of the Terminase_1 family of large terminase proteins.


Assuntos
Bacteriófagos/fisiologia , Empacotamento do DNA , Proteínas Virais/metabolismo , Montagem de Vírus , Sequência de Aminoácidos , Bacteriófagos/ultraestrutura , Domínio Catalítico , Dicroísmo Circular , Endodesoxirribonucleases/metabolismo , Escherichia coli/virologia , Histidina/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Subunidades Proteicas/metabolismo , Proteínas Virais/química
19.
Mol Microbiol ; 96(3): 437-47, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25532427

RESUMO

Phages play critical roles in the spread of virulence factors and control of bacterial populations through their predation of bacteria. An essential step in the phage lifecycle is genome entry, where the infecting phage must productively interact with the components of the bacterial cell envelope in order to transmit its genome out of the viral particle and into the host cell cytoplasm. In this study, we characterize this process for the Escherichia coli phage HK97. We have discovered that HK97 genome injection requires the activities of the inner membrane glucose transporter protein, PtsG, and the periplasmic chaperone, FkpA. The requirements for PtsG and FkpA are determined by the sequence of the phage tape measure protein (TMP). We also identify a region of the TMP that mediates inhibition of phage genome injection by the HK97 superinfection exclusion protein, gp15. This region of the TMP also determines the PtsG requirement, and we show that gp15-mediated inhibition requires PtsG. Based on these data, we present a model for the in vivo genome injection process of phage HK97 and postulate a mechanism by which the inhibitory action of gp15 is reliant upon PtsG.


Assuntos
Colífagos/fisiologia , DNA Viral/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/virologia , Proteínas de Membrana/metabolismo , Peptidilprolil Isomerase/metabolismo , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/metabolismo , Proteínas da Cauda Viral/metabolismo , Internalização do Vírus , Escherichia coli/metabolismo , Genoma Viral , Chaperonas Moleculares/metabolismo , Proteínas Periplásmicas/metabolismo
20.
J Virol ; 88(2): 1162-74, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24198424

RESUMO

Bacteriophage T5 represents a large family of lytic Siphoviridae infecting Gram-negative bacteria. The low-resolution structure of T5 showed the T=13 geometry of the capsid and the unusual trimeric organization of the tail tube, and the assembly pathway of the capsid was established. Although major structural proteins of T5 have been identified in these studies, most of the genes encoding the morphogenesis proteins remained to be identified. Here, we combine a proteomic analysis of T5 particles with a bioinformatic study and electron microscopic immunolocalization to assign function to the genes encoding the structural proteins, the packaging proteins, and other nonstructural components required for T5 assembly. A head maturation protease that likely accounts for the cleavage of the different capsid proteins is identified. Two other proteins involved in capsid maturation add originality to the T5 capsid assembly mechanism: the single head-to-tail joining protein, which closes the T5 capsid after DNA packaging, and the nicking endonuclease responsible for the single-strand interruptions in the T5 genome. We localize most of the tail proteins that were hitherto uncharacterized and provide a detailed description of the tail tip composition. Our findings highlight novel variations of viral assembly strategies and of virion particle architecture. They further recommend T5 for exploring phage structure and assembly and for deciphering conformational rearrangements that accompany DNA transfer from the capsid to the host cytoplasm.


Assuntos
Bacteriófagos/crescimento & desenvolvimento , Bacteriófagos/ultraestrutura , Siphoviridae/crescimento & desenvolvimento , Siphoviridae/ultraestrutura , Proteínas Virais/metabolismo , Sequência de Aminoácidos , Bacteriófagos/genética , Bacteriófagos/metabolismo , Capsídeo/química , Capsídeo/metabolismo , Capsídeo/ultraestrutura , Escherichia coli/virologia , Microscopia Eletrônica , Dados de Sequência Molecular , Alinhamento de Sequência , Siphoviridae/genética , Siphoviridae/metabolismo , Proteínas Virais/química , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA