Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Adv ; 9(46): eadg3256, 2023 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-37967182

RESUMO

Games have a long history as benchmarks for progress in artificial intelligence. Approaches using search and learning produced strong performance across many perfect information games, and approaches using game-theoretic reasoning and learning demonstrated strong performance for specific imperfect information poker variants. We introduce Student of Games, a general-purpose algorithm that unifies previous approaches, combining guided search, self-play learning, and game-theoretic reasoning. Student of Games achieves strong empirical performance in large perfect and imperfect information games-an important step toward truly general algorithms for arbitrary environments. We prove that Student of Games is sound, converging to perfect play as available computation and approximation capacity increases. Student of Games reaches strong performance in chess and Go, beats the strongest openly available agent in heads-up no-limit Texas hold'em poker, and defeats the state-of-the-art agent in Scotland Yard, an imperfect information game that illustrates the value of guided search, learning, and game-theoretic reasoning.

2.
J Ocean Eng Mar Energy ; 6(3): 277-292, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33184602

RESUMO

The vast majority of numerical wave tank applications are solved using finite volume-based, volume of fluid methods. One popular numerical modelling framework is OpenFOAM and its two phase solvers, interFoam and interIsoFoam, enabling the simulation of a broad range of marine hydrodynamic phenomena. However, in many applications, certain aspects of the entire set of possible hydrodynamic phenomena are not of interest and the reduced complexity could allow the use of simpler, more computationally efficient solvers. One barrier for the application of such alternative solvers is the lack of suitable wavemaking and absorption capabilities, which this paper aims to address. A wavemaking and absorption methodology is presented, which can be applied to different solvers using the same fundamental concept. The implementation is presented for interFoam and interIsoFoam, as well as two other solvers whose use as numerical wave tanks has not previously been reported in the literature, shallowWaterFoam and potentialFreeSurfaceFoam. Parameter studies are performed to guide the user in the use of the methods. Example applications for two industrially relevant test cases are demonstrated; a multi-frequency wave packet focused at one position over flat bottom and regular waves propagating over a submerged shoal. All solvers yielded useful results, but some complex wave transformations in the shoal case were only resolved by the VoF methods. Alternative methods beyond the already well established VoF methods seem worth considering because potential for significant reductions in computational effort exist.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA