Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 491: 117073, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39159848

RESUMO

New approach methodologies (NAMs) aim to accelerate the pace of chemical risk assessment while simultaneously reducing cost and dependency on animal studies. High Throughput Transcriptomics (HTTr) is an emerging NAM in the field of chemical hazard evaluation for establishing in vitro points-of-departure and providing mechanistic insight. In the current study, 1201 test chemicals were screened for bioactivity at eight concentrations using a 24-h exposure duration in the human- derived U-2 OS osteosarcoma cell line with HTTr. Assay reproducibility was assessed using three reference chemicals that were screened on every assay plate. The resulting transcriptomics data were analyzed by aggregating signal from genes into signature scores using gene set enrichment analysis, followed by concentration-response modeling of signatures scores. Signature scores were used to predict putative mechanisms of action, and to identify biological pathway altering concentrations (BPACs). BPACs were consistent across replicates for each reference chemical, with replicate BPAC standard deviations as low as 5.6 × 10-3 µM, demonstrating the internal reproducibility of HTTr-derived potency estimates. BPACs of test chemicals showed modest agreement (R2 = 0.55) with existing phenotype altering concentrations from high throughput phenotypic profiling using Cell Painting of the same chemicals in the same cell line. Altogether, this HTTr based chemical screen contributes to an accumulating pool of publicly available transcriptomic data relevant for chemical hazard evaluation and reinforces the utility of cell based molecular profiling methods in estimating chemical potency and predicting mechanism of action across a diverse set of chemicals.


Assuntos
Perfilação da Expressão Gênica , Ensaios de Triagem em Larga Escala , Transcriptoma , Humanos , Ensaios de Triagem em Larga Escala/métodos , Linhagem Celular Tumoral , Transcriptoma/efeitos dos fármacos , Perfilação da Expressão Gênica/métodos , Reprodutibilidade dos Testes , Relação Dose-Resposta a Droga , Medição de Risco , Osteossarcoma/genética , Osteossarcoma/patologia
2.
Toxicol Appl Pharmacol ; 468: 116513, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37044265

RESUMO

'Cell Painting' is an imaging-based high-throughput phenotypic profiling (HTPP) method in which cultured cells are fluorescently labeled to visualize subcellular structures (i.e., nucleus, nucleoli, endoplasmic reticulum, cytoskeleton, Golgi apparatus / plasma membrane and mitochondria) and to quantify morphological changes in response to chemicals or other perturbagens. HTPP is a high-throughput and cost-effective bioactivity screening method that detects effects associated with many different molecular mechanisms in an untargeted manner, enabling rapid in vitro hazard assessment for thousands of chemicals. Here, 1201 chemicals from the ToxCast library were screened in concentration-response up to ∼100 µM in human U-2 OS cells using HTPP. A phenotype altering concentration (PAC) was estimated for chemicals active in the tested range. PACs tended to be higher than lower bound potency values estimated from a broad collection of targeted high-throughput assays, but lower than the threshold for cytotoxicity. In vitro to in vivo extrapolation (IVIVE) was used to estimate administered equivalent doses (AEDs) based on PACs for comparison to human exposure predictions. AEDs for 18/412 chemicals overlapped with predicted human exposures. Phenotypic profile information was also leveraged to identify putative mechanisms of action and group chemicals. Of 58 known nuclear receptor modulators, only glucocorticoids and retinoids produced characteristic profiles; and both receptor types are expressed in U-2 OS cells. Thirteen chemicals with profile similarity to glucocorticoids were tested in a secondary screen and one chemical, pyrene, was confirmed by an orthogonal gene expression assay as a novel putative GR modulating chemical. Most active chemicals demonstrated profiles not associated with a known mechanism-of-action. However, many structurally related chemicals produced similar profiles, with exceptions such as diniconazole, whose profile differed from other active conazoles. Overall, the present study demonstrates how HTPP can be applied in screening-level chemical assessments through a series of examples and brief case studies.


Assuntos
Bioensaio , Ensaios de Triagem em Larga Escala , Humanos , Medição de Risco/métodos , Ensaios de Triagem em Larga Escala/métodos , Células Cultivadas , Bioensaio/métodos
3.
Reprod Toxicol ; 113: 172-188, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36122840

RESUMO

Chemical risk assessment considers potentially susceptible populations including pregnant women and developing fetuses. Humans encounter thousands of chemicals in their environments, few of which have been fully characterized. Toxicokinetic (TK) information is needed to relate chemical exposure to potentially bioactive tissue concentrations. Observational data describing human gestational exposures are unavailable for most chemicals, but physiologically based TK (PBTK) models estimate such exposures. Development of chemical-specific PBTK models requires considerable time and resources. As an alternative, generic PBTK approaches describe a standardized physiology and characterize chemicals with a set of standard physical and TK descriptors - primarily plasma protein binding and hepatic clearance. Here we report and evaluate a generic PBTK model of a human mother and developing fetus. We used a published set of formulas describing the major anatomical and physiological changes that occur during pregnancy to augment the High-Throughput Toxicokinetics (httk) software package. We simulated the ratio of concentrations in maternal and fetal plasma and compared to literature in vivo measurements. We evaluated the model with literature in vivo time-course measurements of maternal plasma concentrations in pregnant and non-pregnant women. Finally, we prioritized chemicals measured in maternal serum based on predicted fetal brain concentrations. This new model can be used for TK simulations of 859 chemicals with existing human-specific in vitro TK data as well as any new chemicals for which such data become available. This gestational model may allow for in vitro to in vivo extrapolation of point of departure doses relevant to reproductive and developmental toxicity.


Assuntos
Modelos Biológicos , Feminino , Humanos , Medição de Risco , Toxicocinética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA