Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-35064080

RESUMO

The phase state of respiratory aerosols and droplets has been linked to the humidity-dependent survival of pathogens such as SARS-CoV-2. To inform strategies to mitigate the spread of infectious disease, it is thus necessary to understand the humidity-dependent phase changes associated with the particles in which pathogens are suspended. Here, we study phase changes of levitated aerosols and droplets composed of model respiratory compounds (salt and protein) and growth media (organic-inorganic mixtures commonly used in studies of pathogen survival) with decreasing relative humidity (RH). Efflorescence was suppressed in many particle compositions and thus unlikely to fully account for the humidity-dependent survival of viruses. Rather, we identify organic-based, semisolid phase states that form under equilibrium conditions at intermediate RH (45 to 80%). A higher-protein content causes particles to exist in a semisolid state under a wider range of RH conditions. Diffusion and, thus, disinfection kinetics are expected to be inhibited in these semisolid states. These observations suggest that organic-based, semisolid states are an important consideration to account for the recovery of virus viability at low RH observed in previous studies. We propose a mechanism in which the semisolid phase shields pathogens from inactivation by hindering the diffusion of solutes. This suggests that the exogenous lifetime of pathogens will depend, in part, on the organic composition of the carrier respiratory particle and thus its origin in the respiratory tract. Furthermore, this work highlights the importance of accounting for spatial heterogeneities and time-dependent changes in the properties of aerosols and droplets undergoing evaporation in studies of pathogen viability.


Assuntos
Cloreto de Cálcio/química , Modelos Químicos , Aerossóis e Gotículas Respiratórios/química , SARS-CoV-2/química , Albumina Sérica/química , Cloreto de Sódio/química , COVID-19/virologia , Difusão , Desinfecção/métodos , Humanos , Umidade , Cinética , Viabilidade Microbiana , Transição de Fase , Propriedades de Superfície
2.
Appl Environ Microbiol ; 89(3): e0154522, 2023 03 29.
Artigo em Inglês | MEDLINE | ID: mdl-36856430

RESUMO

The outbreak of SARS-CoV-2 has emphasized the need for a deeper understanding of infectivity, spread, and treatment of airborne viruses. Bacteriophages (phages) serve as ideal surrogates for respiratory pathogenic viruses thanks to their high tractability and the structural similarities tailless phages bear to viral pathogens. However, the aerosolization of enveloped SARS-CoV-2 surrogate phi6 usually results in a >3-log10 reduction in viability, limiting its usefulness as a surrogate for aerosolized coronavirus in "real world" contexts, such as a sneeze or cough. Recent work has shown that saliva or artificial saliva greatly improves the stability of viruses in aerosols and microdroplets relative to standard dilution/storage buffers like suspension medium (SM) buffer. These findings led us to investigate whether we could formulate media that preserves the viability of phi6 and other phages in artificially derived aerosols. Results indicate that SM buffer supplemented with bovine serum albumin (BSA) significantly improves the recovery of airborne phi6, MS2, and 80α and outperforms commercially formulated artificial saliva. Particle sizing and acoustic particle trapping data indicate that BSA supplementation dose-dependently improves viral survivability by reducing the extent of particle evaporation. These data suggest that our viral preservation medium may facilitate a lower-cost alternative to artificial saliva for future applied aerobiology studies. IMPORTANCE We have identified common and inexpensive lab reagents that confer increased aerosol survivability on phi6 and other phages. Our results suggest that soluble protein is a key protective component in nebulizing medium. Protein supplementation likely reduces exposure of the phage to the air-water interface by reducing the extent of particle evaporation. These findings will be useful for applications in which researchers wish to improve the survivability of these (and likely other) aerosolized viruses to better approximate highly transmissible airborne viruses like SARS-CoV-2.


Assuntos
Bacteriófagos , COVID-19 , Vírus , Humanos , Saliva Artificial , SARS-CoV-2 , Aerossóis e Gotículas Respiratórios
3.
J Phys Chem A ; 125(39): 8668-8679, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34553594

RESUMO

Atmospheric aerosols are complex with both inorganic and organic components. The soluble inorganics can transition between aqueous and crystalline phases through efflorescence and deliquescence. This study focuses on the efflorescence of (NH4)2SO4/organic particles by seeded crystal growth through contact with a crystal of (NH4)2SO4. Seeded crystal growth is known to effectively shut down supersaturation of aqueous aerosols. Here, we investigate whether organics can inhibit seeded crystal growth. We demonstrate that poly(ethylene glycol) 400 (PEG-400), which phase-separates from the aqueous (NH4)2SO4 and forms a core-shell structure, did not inhibit seeded crystal growth of (NH4)2SO4 at all relative humidity (RH) values below deliquescence RH. The PEG-400 layer was not viscous enough to prevent the diffusion of species through the coating. In contrast, we find that although raffinose, which stays homogeneously mixed with (NH4)2SO4, did not inhibit seeded crystal growth at RH > 45%, it did inhibit heterogeneous efflorescence at lower humidities. Viscosity measurements using an electrodynamic balance show a significant increase in viscosity as humidity was lowered, suggesting that inhibited diffusion of water and ions prevented efflorescence. The observed efflorescence at the higher RH also demonstrates that collisions can induce efflorescence of mixed aerosols that would otherwise not homogeneously effloresce.

4.
Anal Chem ; 92(4): 3086-3094, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-31941272

RESUMO

The formation of gelatinous networks within an aerosol particle significantly alters the physicochemical properties of the aerosol material. Existing techniques for studying gel transitions rely on bulk rheometry, which is limited by contact with the sample, or microrheological techniques such as holographic optical tweezers, which rely on expensive equipment and high-powered lasers that can degrade light-absorbing aerosol. Here, we present a new technique to probe the microrheological characteristics of aerosol particles and explore gel formation under atmospheric conditions in a contactless environment without the need for high-power light sources. In a dual-balance quadrupole electrodynamic balance, levitated droplets of opposite polarity are trapped and equilibrated at fixed relative humidity (RH) and then subsequently merged, and the physical characteristics of the merged droplets are monitored as a function of time and RH using imaging techniques. By comparing the RH-dependent characteristics of MgSO4 (known to undergo a gel transition) to glucose and sucrose (known to remain as viscous Newtonian fluids) under fixed equilibration time scales, we demonstrate that gel phase transitions can be identified in aerosol particles, with MgSO4 abruptly transitioning to a rigid microgel at 30% RH. Further, we demonstrate this technique can be used to also measure aerosol viscosity and identify non-Newtonian fluid dynamics in model sea spray aerosol composed of NaCl, CaCl2, and sorbitol. Thus, using this experimental technique, it is possible to distinguish between aerosol compositions that form viscous Newtonian fluids and those that undergo a gel transition or form non-Newtonian fluids. This technique offers a simple and cost-effective analytical tool for probing gel transitions outside of bulk solubility limits, with relevant applications ranging from atmospheric science to microengineering of soft matter materials.

5.
J Phys Chem A ; 122(5): 1303-1311, 2018 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-29332388

RESUMO

The phase state of inorganic salt aerosols impacts their properties, including the ability to undergo hygroscopic growth, catalyze heterogeneous reactions, and act as cloud condensation nuclei. Here, we report the first observation of contact efflorescence by mineral dust aerosol. The efflorescence of aqueous ammonium sulfate ((NH4)2SO4) and sodium chloride (NaCl) droplets by contact with three types of mineral dust particles (illite, montmorillonite, and NX illite), were examined using an optical levitation chamber. Immersion mode efflorescence was also studied for comparison. We find that in the presence of mineral dust particles, crystallization occurred at a higher relative humidity (RH) when compared to the homogeneous phase transition. Additionally, crystallization by contact mode efflorescence occurred at a higher RH than the corresponding immersion mode. Crystallization efficiencies in the contact mode exhibited an ion-specific trend consistent with the Hoffmeister series. Estimates for lifetimes of a salt droplet to collide with dust particles suggests that collisions between the two aerosol types are likely to occur before the salt aerosol is removed by other atmospheric processes. Such collisions could then lead to the crystallization of salt droplets that would otherwise have remained liquid, changing the overall impact that salt aerosols have on atmospheric chemistry and climate.

6.
Proc Natl Acad Sci U S A ; 112(52): 15815-20, 2015 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-26668396

RESUMO

Inadequate knowledge of the phase state of atmospheric particles represents a source of uncertainty in global climate and air quality models. Hygroscopic aqueous inorganic particles are often assumed to remain liquid throughout their atmospheric lifetime or only (re)crystallize at low relative humidity (RH) due to the kinetic limitations of efflorescence (salt crystal nucleation and growth from an aqueous solution). Here we present experimental observations of a previously unexplored heterogeneous nucleation pathway that we have termed "contact efflorescence," which describes efflorescence initiated by an externally located solid particle coming into contact with the surface of a metastable aqueous microdroplet. This study demonstrates that upon a single collision, contact efflorescence is a pathway for crystallization of atmospherically relevant aqueous particles at high ambient RH (≤80%). Soluble inorganic crystalline particles were used as contact nuclei to induce efflorescence of aqueous ammonium sulfate [(NH4)2SO4], sodium chloride (NaCl), and ammonium nitrate (NH4NO3), with efflorescence being observed in several cases close to their deliquescence RH values (80%, 75%, and 62%, respectively). To our knowledge, these observations represent the highest reported efflorescence RH values for microdroplets of these salts. These results are particularly important for considering the phase state of NH4NO3, where the contact efflorescence RH (∼20-60%) is in stark contrast to the observation that NH4NO3 microdroplets do not homogeneously effloresce, even when exposed to extremely arid conditions (<1% RH). Considering the occurrence of particle collisions in the atmosphere (i.e., coagulation), these observations of contact efflorescence challenge many assumptions made about the phase state of inorganic aerosol.

7.
Anal Chem ; 89(22): 12494-12501, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29083875

RESUMO

In-depth investigations of the kinetics of aqueous chemistry occurring in microdroplet environments require experimental techniques that allow a reaction to be initiated at a well-defined point in time and space. Merging microdroplets of different reactants is one such approach. The mixing dynamics of unconfined (airborne) microdroplets have yet to be studied in detail, which is an essential step toward widespread use and application of merged droplet microreactors for monitoring chemical reactions. Here, we present an on-demand experimental approach for initiating chemical reactions in and characterizing the mixing dynamics of colliding airborne microdroplets (40 ± 5 µm diameter) using a streak-based fluorescence microscopy technique. The advantages of this approach include the ability to generate two well-controlled monodisperse microdroplet streams and collide (and thus mix) the microdroplets with high spatial and temporal control while consuming small amounts of sample (<0.1 µL/s). Mixing times are influenced not only by the velocity at which microdroplets collide but also the geometry of the collision (i.e., head-on vs off-center collision). For head-on collisions, we achieve submillisecond mixing times ranging from ∼900 µs at a collision velocity of 0.1 m/s to <200 µs at ∼6 m/s. For low-velocity (<1 m/s) off-center collisions, mixing times were consistent with the head-on cases. For high-velocity (i.e., > 1 m/s) off-center collisions, mixing times increased by as much as a factor of 6 (e.g., at ∼6 m/s, mixing times increased from <200 µs for head-on collisions to ∼1200 µs for highly off-center collisions). At collision velocities >7 m/s, droplet separation and fragmentation occurred, resulting in incomplete mixing. These results suggest a limited range of collision velocities over which complete and rapid mixing can be achieved when using airborne merged microdroplets to, e.g., study reaction kinetics when reaction times are short relative to typical bulk reactor mixing times. We benchmark our reactor using an aqueous-phase oxidation reaction: iron-catalyzed hydroxyl radical production from hydrogen peroxide (Fenton's reaction) and subsequent aqueous-phase oxidation of organic species in solution. Kinetic simulations of our measurements show that quantitative agreement can be obtained using known bulk-phase kinetics for bimolecular reactions in our colliding-droplet microreactor.

8.
Anal Chem ; 89(22): 12511-12519, 2017 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-29048875

RESUMO

Recent studies suggest that reactions in aqueous microcompartments can occur at significantly different rates than those in the bulk. Most studies have used electrospray to generate a polydisperse source of highly charged microdroplets, leading to multiple confounding factors potentially influencing reaction rates (e.g., evaporation, charge, and size). Thus, the underlying mechanism for the observed enhancement remains unclear. We present a new type of electrodynamic balance-the branched quadrupole trap (BQT)-which can be used to study reactions in microdroplets in a controlled environment. The BQT allows for condensed phase chemical reactions to be initiated by colliding droplets with different reactants and levitating the merged droplet indefinitely. The performance of the BQT is characterized in several ways. Sub-millisecond mixing times as fast as ∼400 µs are measured for low velocity (∼0.1 m/s) collisions of droplets with <40 µm diameters. The reaction of o-phthalaldehyde (OPA) with alanine in the presence of dithiolthreitol is measured using both fluorescence spectroscopy and single droplet paper spray mass spectrometry. The bimolecular rate constant for reaction of alanine with OPA is found to be 84 ± 10 and 67 ± 6 M-1 s-1 in a 30 µm radius droplet and bulk solution, respectively, which demonstrates that bimolecular reaction rate coefficients can be quantified using merged microdroplets and that merged droplets can be used to study rate enhancements due to compartmentalization. Products of the reaction of OPA with alanine are detected in single droplets using paper spray mass spectrometry. We demonstrate that single droplets with <100 pg of analyte can easily be studied using single droplet mass spectrometry.

9.
Anal Chem ; 87(12): 6186-94, 2015 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-25961113

RESUMO

A novel optical trapping technique is described that combines an upward propagating Gaussian beam and a downward propagating Bessel beam. Using this optical arrangement and an on-demand droplet generator makes it possible to rapidly and reliably trap particles with a wide range of particle diameters (∼1.5-25 µm), in addition to crystalline particles, without the need to adjust the optical configuration. Additionally, a new image analysis technique is described to detect particle phase transitions using a template-based autocorrelation of imaged far-field elastically scattered laser light. The image analysis allows subtle changes in particle characteristics to be quantified. The instrumental capabilities are validated with observations of deliquescence and homogeneous efflorescence of well-studied inorganic salts. Then, a novel collision-based approach to seeded crystal growth is described in which seed crystals are delivered to levitated aqueous droplets via a nitrogen gas flow. To our knowledge, this is the first account of contact-induced phase changes being studied in an optical trap. This instrument offers a novel and simple analytical technique for in situ measurements and observations of phase changes and crystal growth processes relevant to atmospheric science, industrial crystallization, pharmaceuticals, and many other fields.

10.
PNAS Nexus ; 2(2): pgac301, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36743472

RESUMO

An accepted murine analogue for the environmental behavior of human SARS coronaviruses was aerosolized in microdroplets of its culture media and saliva to observe the decay of its airborne infectious potential under relative humidity (RH) conditions relevant to conditioned indoor air. Contained in a dark, 10 m3 chamber maintained at 22°C, murine hepatitis virus (MHV) was entrained in artificial saliva particles that were aerosolized in size distributions that mimic SARS-CoV-2 virus expelled from infected humans' respiration. As judged by quantitative PCR, more than 95% of the airborne MHV aerosolized was recovered from microdroplets with mean aerodynamic diameters between 0.56 and 5.6 µm. As judged by its half-life, calculated from the median tissue culture infectious dose (TCID50), saliva was protective of airborne murine coronavirus through a RH range recommended for conditioned indoor air (60% < RH < 40%; average half-life = 60 minutes). However, its average half-life doubled to 120 minutes when RH was maintained at 25%. Saliva microaerosol was dominated by carbohydrates, which presented hallmarks of vitrification without efflorescence at low RH. These results suggest that dehydrating carbohydrates can affect the infectious potential coronaviruses exhibit while airborne, significantly extending their persistence under the drier humidity conditions encountered indoors.

11.
J Chem Phys ; 137(2): 024309, 2012 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-22803538

RESUMO

Several absorption bands exist in the vacuum ultraviolet (VUV) region of carbon monoxide (CO). Emission spectra indicate that these bands are all predissociative. Experimental results of CO photodissociation by vacuum ultraviolet photons (90 to 108 nm; ∼13 to 11 eV) from the Advanced Light Source synchrotron by measurement of the oxygen isotopic composition of the products are presented here. A large (few hundred per mil) range of oxygen isotopic compositions are observed in the CO photodissociation product and are wavelength dependent. Slope values (δ('17)O/δ('18)O) ranging from 0.72 to 1.36 were observed in the oxygen three-isotope space (δ('18)O vs. δ('17)O), which anti-correlated with increasing synchrotron photon energy, and indicates a dependency on the upper electronic state specific dissociation dynamics (e.g., perturbation and coupling associated with a particular state). An unprecedented magnitude in isotope fractionation was observed for photodissociation at 105 and 107 nm and is found to be associated with accidental predissociation of the vibrational states (ν = 0 and 1) for the upper electronic state E(1)Π. A significant temperature dependency in oxygen isotopic fractionation was observed, indicating a rotational level dependency in the predissociation process.

12.
Sci Adv ; 6(47)2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33208357

RESUMO

Atmospheric aerosol particles are commonly complex, aqueous organic-inorganic mixtures, and accurately predicting the properties of these particles is essential for air quality and climate projections. The prevailing assumption is that aqueous organic-inorganic aerosols exist predominately with liquid properties and that the hygroscopic inorganic fraction lowers aerosol viscosity relative to the organic fraction alone. Here, in contrast to those assumptions, we demonstrate that increasing inorganic fraction can increase aerosol viscosity (relative to predictions) and enable a humidity-dependent gel phase transition through cooperative ion-molecule interactions that give rise to long-range networks of atmospherically relevant low-mass oxygenated organic molecules (180 to 310 Da) and divalent inorganic ions. This supramolecular, ion-molecule effect can drastically influence the phase and physical properties of organic-inorganic aerosol and suggests that aerosol may be (semi)solid under more conditions than currently predicted. These observations, thus, have implications for air quality and climate that are not fully represented in atmospheric models.

13.
J Am Soc Mass Spectrom ; 30(2): 339-343, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30374662

RESUMO

Recent studies show that reactions inside micron-sized compartments (e.g., droplets, emulsions) can proceed at significantly accelerated rates and with different mechanisms compared to the same reactions in a macroscopic container. Many of these studies use electrospray ionization (ESI) to both generate droplets and to quantify, via mass spectrometry (MS), droplet reaction kinetics. The highly charged and rapidly evaporating droplets produced in ESI make it difficult to examine precisely the underlying cause for droplet-induced rate enhancements. Additionally, interpretation of the spectra from ESI-MS can be complicated by gas-phase ion-molecule and clustering reactions. Here, we use an approach where droplet generation is separated from ionization, in order to decouple the multiple possible sources of acceleration and to examine more closely the potential role of gas-phase chemistry. The production of sugar phosphates from the reaction of phosphoric acid with simple sugars (a reaction that does not occur in bulk solution but has recently been reported to occur in droplets) is measured using this approach to compare reactivity in droplets (i.e., with compartments) with that in the gas phase (i.e., without compartments). The same product ions that have been previously assigned to in droplet reactions are observed with and without compartmentalization. These results suggest that in some cases, gas-phase processes in the ionization region can potentially complicate the quantification and interpretation of accelerated reactions in droplets using ESI-MS (or one of its variants). In such cases, contributions from in-droplet chemistry cannot be ruled out, but we demonstrate that gas-phase processes can be a significant (and possibly dominant) reaction pathway. We suggest that future studies of rate acceleration in droplets be modified to better assess the potential for non-droplet-related processes. Graphical Abstract ᅟ.

14.
Sci Adv ; 3(7): e1700425, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28776032

RESUMO

Particle collisions are a common occurrence in the atmosphere, but no empirical observations exist to fully predict the potential effects of these collisions on air quality and climate projections. The current consensus of heterogeneous crystal nucleation pathways relevant to the atmosphere dictates that collisions with amorphous particles have no effect on the crystallization relative humidity (RH) of aqueous inorganic aerosols because there is no stabilizing ion-surface interaction to facilitate the formation of crystal nuclei. In contrast to this view of heterogeneous nucleation, we report laboratory observations demonstrating that collisions with hydrophobic amorphous organic aerosols induced crystallization of aqueous inorganic microdroplets at high RH, the effect of which was correlated with destabilizing water-mediated ion-specific surface interactions. These same organic aerosols did not induce crystallization once internally mixed in the droplet, pointing toward a previously unconsidered transient ion-specific crystal nucleation pathway that can promote aerosol crystallization via particle collisions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA