Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Environ Sci Technol ; 48(4): 2312-20, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24397428

RESUMO

Although diclofenac is frequently found in aquatic systems, its degradability in the environment remains imperfectly understood. On the one hand, evidence from concentration analysis alone is inconclusive if an unknown hydrology impedes a distinction between degradation and dilution. On the other hand, not all transformation products may be detectable. As a new approach, we therefore developed GC-IRMS (gas chromatography-isotope-ratio mass-spectrometry) analysis for carbon and nitrogen isotope measurements of diclofenac. The method uses a derivatization step that can be conducted either online or offline, for optimized throughput or sensitivity, respectively. In combination with on-column injection, the latter method enables determination of diclofenac isotope ratios down to the sub-µgL(-1) range in environmental samples. Degradation in an aerobic sediment-water system showed strong nitrogen isotope fractionation (εN = -7.1‰), whereas reductive diclofenac dechlorination was associated with significant carbon isotope fractionation (εC = -2.0‰). Hence dual element isotope analysis bears potential not only to detect diclofenac degradation, but even to distinguish both transformation pathways in the environment. In an explorative survey, analysis of commercial diclofenac products showed significant differences in carbon and nitrogen isotope ratios, demonstrating a further potential to track, and potentially even to authenticate, commercial production batches.


Assuntos
Diclofenaco/análise , Poluentes Químicos da Água/análise , Aerobiose , Biodegradação Ambiental , Biotransformação , Isótopos de Carbono , Fracionamento Químico , Diclofenaco/química , Cromatografia Gasosa-Espectrometria de Massas/métodos , Sedimentos Geológicos/química , Halogenação , Cinética , Limite de Detecção , Isótopos de Nitrogênio , Oxirredução , Padrões de Referência , Reprodutibilidade dos Testes , Dióxido de Silício/química
2.
Environ Sci Technol ; 45(19): 8506-13, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21877727

RESUMO

Biologically produced monometallic palladium nanoparticles (bio-Pd) have been shown to catalyze the dehalogenation of environmental contaminants, but fail to efficiently catalyze the degradation of other important recalcitrant halogenated compounds. This study represents the first report of biologically produced bimetallic Pd/Au nanoparticle catalysts. The obtained catalysts were tested for the dechlorination of diclofenac and trichlorethylene. When aqueous bivalent Pd(II) and trivalent Au(III) ions were both added to concentrations of 50 mg L(-1) and reduced simultaneously by Shewanella oneidensis in the presence of H(2), the resulting cell-associated bimetallic nanoparticles (bio-Pd/Au) were able to dehalogenate 78% of the initially added diclofenac after 24 h; in comparison, no dehalogenation was observed using monometallic bio-Pd or bio-Au. Other catalyst-synthesis strategies did not show improved dehalogenation of TCE and diclofenac compared with bio-Pd. Synchrotron-based X-ray diffraction, (scanning) transmission electron microscopy and energy dispersive X-ray spectroscopy indicated that the simultaneous reduction of Pd and Au supported on cells of S. oneidensis resulted in the formation of a unique bimetallic crystalline structure. This study demonstrates that the catalytic activity and functionality of possibly environmentally more benign biosupported Pd-catalysts can be improved by coprecipitation with Au.


Assuntos
Poluentes Ambientais/isolamento & purificação , Ouro/química , Halogenação , Metais/química , Nanopartículas/química , Paládio/química , Shewanella/metabolismo , Biodegradação Ambiental , Catálise , Precipitação Química , Diclofenaco/isolamento & purificação , Concentração de Íons de Hidrogênio , Cinética , Nanopartículas/ultraestrutura , Shewanella/ultraestrutura , Fatores de Tempo , Tricloroetileno/isolamento & purificação , Difração de Raios X
3.
Appl Microbiol Biotechnol ; 91(5): 1435-45, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21590286

RESUMO

A new biological inspired method to produce nanopalladium is the precipitation of Pd on a bacterium, i.e., bio-Pd. This bio-Pd can be applied as catalyst in dehalogenation reactions. However, large amounts of hydrogen are required as electron donor in these reactions resulting in considerable costs. This study demonstrates how bacteria, cultivated under fermentative conditions, can be used to reductively precipitate bio-Pd catalysts and generate the electron donor hydrogen. In this way, one could avoid the costs coupled to hydrogen supply. The catalytic activities of Pd(0) nanoparticles produced by different strains of bacteria (bio-Pd) cultivated under fermentative conditions were compared in terms of their ability to dehalogenate the recalcitrant aqueous pollutants diatrizoate and trichloroethylene. While all of the fermentative bio-Pd preparations followed first order kinetics in the dehalogenation of diatrizoate, the catalytic activity differed systematically according to hydrogen production and starting Pd(II) concentration in solution. Batch reactors with nanoparticles formed by Citrobacter braakii showed the highest diatrizoate dehalogenation activity with first order constants of 0.45 ± 0.02 h⁻¹ and 5.58 ± 0.6 h⁻¹ in batches with initial concentrations of 10 and 50 mg L⁻¹ Pd, respectively. Nanoparticles on C. braakii, used in a membrane bioreactor treating influent containing 20 mg L⁻¹ diatrizoate, were capable of dehalogenating 22 mg diatrizoate mg⁻¹ Pd over a period of 19 days before bio-Pd catalytic activity was exhausted. This study demonstrates the possibility to use the combination of Pd(II), a carbon source and bacteria under fermentative conditions for the abatement of environmental halogenated contaminants.


Assuntos
Bactérias/metabolismo , Diatrizoato/metabolismo , Recuperação e Remediação Ambiental/métodos , Hidrogênio/metabolismo , Nanopartículas Metálicas/química , Paládio/química , Poluentes Químicos da Água/metabolismo , Bactérias/química , Biodegradação Ambiental , Reatores Biológicos/microbiologia , Catálise , Recuperação e Remediação Ambiental/instrumentação , Fermentação , Cinética , Nanopartículas Metálicas/microbiologia , Oxirredução , Paládio/metabolismo
4.
Colloids Surf B Biointerfaces ; 102: 898-904, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23107967

RESUMO

An increasing demand for catalytic Pd nanoparticles has motivated the search for sustainable production methods. An innovative approach uses bacterial cells as support material for synthesizing Pd nanoparticles by reduction of Pd(II) with e.g. hydrogen or formate. Nevertheless, drawbacks of microbially supported Pd catalysts are the low catalytic activity compared to conventional Pd nanocatalysts and the possible poisoning of the catalyst surface by sulfur originating from bacterial proteins. A recent study showed that amine groups were a key component in surface-supported synthesis of Pd nanoparticles, and that abiotic surfaces could support the Pd particle synthesis as efficiently as bacteria. In this study, we explore the possibility of replacing bacteria with amine-functionalized materials, and we compare different functionalization strategies. Pd nanoparticles formed on the support materials were visualized by transmission electron microscopy, and their activity was evaluated by catalysis of p-nitrophenol reduction. Surfaces functionalized with 3-aminopropyltriethoxysilane and chitosan were interesting alternatives to bacterial cells, as the catalytic activity of Pd particles formed on these surfaces was higher than for Pd particles formed on Shewanella oneidensis cells. Smaller Pd nanoparticles generally have better catalytic properties, and previous studies have shown that the particle size can be lowered by increasing the amount of support material used during Pd particle formation. However, increasing the concentration of S. oneidensis cells beyond a certain threshold lead to deactivation of the Pd catalyst. This was not observed for the sulfur-free support materials, implying that such amine-rich materials can provide an excellent support for environmentally friendly synthesis of surface-immobilized Pd nanoparticles.


Assuntos
Nanopartículas/química , Paládio/química , Biotecnologia/métodos , Quitosana/química , Nitrofenóis/química
5.
Curr Opin Biotechnol ; 23(4): 555-61, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22321940

RESUMO

New biological inspired methods were recently developed to recover precious metals from waste streams and to concomitantly produce palladium nanoparticles on bacteria, that is, bio-Pd. This technology offers a variety of opportunities, as the process can considered to be green, tunable, affordable and scalable. The nanoparticle formation and the specific role of the bacteria in the reclamation process are highlighted. The effective performance of bio-Pd as catalyst in dehalogenation reactions, as well as in hydrogenation, reduction and CC coupling reactions has been extensively described in literature. Especially dehalogenation of environmental contaminants represents a promising market for application of bio-Pd. Therefore, several treatment technologies based on bio-Pd in the different environmental compartments are considered and domains, in which bio-Pd can be used at full scale are described. Finally, the perspectives for implementation of the bio-Pd technology in the future are set forward.


Assuntos
Bactérias/metabolismo , Biodegradação Ambiental , Halogênios/metabolismo , Nanopartículas , Paládio , Águas Residuárias/química , Purificação da Água , Bactérias/classificação , Catálise , Humanos , Cinética , Purificação da Água/métodos
6.
Microb Biotechnol ; 5(1): 5-17, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21554561

RESUMO

While precious metals are available to a very limited extent, there is an increasing demand to use them as catalyst. This is also true for palladium (Pd) catalysts and their sustainable recycling and production are required. Since Pd catalysts exist nowadays mostly under the form of nanoparticles, these particles need to be produced in an environment-friendly way. Biological synthesis of Pd nanoparticles ('bio-Pd') is an innovative method for both metal recovery and nanocatalyst synthesis. This review will discuss the different bio-Pd precipitating microorganisms, the applications of the catalyst (both for environmental purposes and in organic chemistry) and the state of the art of the reactors based on the bio-Pd concept. In addition, some main challenges are discussed, which need to be overcome in order to create a sustainable nanocatalyst. Finally, some outlooks for bio-Pd in environmental technology are presented.


Assuntos
Bactérias/metabolismo , Paládio/metabolismo , Bactérias/química , Biodegradação Ambiental , Catálise , Nanopartículas/química , Nanopartículas/microbiologia , Oxirredução , Paládio/química , Reciclagem
7.
Water Res ; 46(8): 2718-26, 2012 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-22406286

RESUMO

By using the metal reducing capacities of bacteria, Pd nanoparticles can be produced in a sustainable way ('bio-Pd'). These bio-Pd nanoparticles can be used as a catalyst in, for example, dehalogenation reactions. However, some halogenated compounds are not efficiently degraded using a bio-Pd catalyst. This study shows that the activity of bio-Pd can be improved by doping with Au(0) ('bio-Pd/Au'). In contrast with bio-Pd, bio-Pd/Au could perform the removal of the model pharmaceutical compound diclofenac from an aqueous medium in batch experiments at neutral pH and with H(2) as the hydrogen donor (first order decay constant of 0.078 ± 0.009 h(-1)). Dehalogenation was for both catalysts the only observed reaction. For bio-Pd/Au, a disproportional increase of catalytic activity was observed with increasing Pd-content of the catalyst. In contrast, when varying the Au-content of the catalyst, a Pd/Au mass ratio of 50/1 showed the highest catalytic activity (first order decay value of 0.52 ± 0.02 h(-1)). The removal of 6.40 µg L(-1) diclofenac from a wastewater treatment plant effluent using bio-Pd was not possible even after prolonged reaction time. However, by using the most active bio-Pd/Au catalyst, 43.8 ± 0.5% of the initially present diclofenac could be removed after 24 h. This study shows that doping of bio-Pd nanoparticles with Au(0) can be a promising approach for the reductive treatment of wastewaters containing halogenated contaminants.


Assuntos
Diclofenaco/isolamento & purificação , Ouro/metabolismo , Halogenação , Paládio/metabolismo , Shewanella/metabolismo , Biodegradação Ambiental , Carbamazepina/isolamento & purificação , Catálise , Cromatografia Líquida , Diatrizoato/isolamento & purificação , Diclofenaco/química , Hospitais , Cinética , Espectrometria de Massas , Resíduos de Serviços de Saúde/análise , Fatores de Tempo , Eliminação de Resíduos Líquidos , Purificação da Água
8.
Water Res ; 44(5): 1498-506, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19939433

RESUMO

There is an increasing concern about the fate of iodinated contrast media (ICM) in the environment. Limited removal efficiencies of currently applied techniques such as advanced oxidation processes require more performant strategies. The aim of this study was to establish an innovative degradation process for diatrizoate, a highly recalcitrant ICM, by using biogenic Pd nanoparticles as free suspension or immobilized in polyvinylidene fluoride (PVDF) and polysulfone (PSf) membranes. As measured by HPLC-UV, the removal of 20mg L(-1) diatrizoate by a 10mg L(-1) Pd suspension was completed after 4h at a pH of 10. LC-MS analysis provided evidence for the sequential hydrodeiodination of diatrizoate. Pd did not lose its activity after incorporation in the PVDF and PSf matrix and the highest activity (k(cat)=30.0+/-0.4h(-1) L g(-1) Pd) was obtained with a casting solution of 10% PSf and 500mg L(-1) Pd. Subsequently, water containing 20mg L(-1) diatrizoate was treated in a membrane contactor, in which the water was supplied at one side of the membrane while hydrogen was provided at the other side. In a fed batch configuration, a removal efficiency of 77% after a time period of 48h was obtained. This work showed that membrane contactors with encapsulated biogenic nanoparticles can be instrumental for treatment of water contaminated with diatrizoate.


Assuntos
Bactérias/metabolismo , Diatrizoato/isolamento & purificação , Membranas Artificiais , Nanopartículas/química , Paládio/química , Biodegradação Ambiental , Catálise , Cromatografia Líquida de Alta Pressão , Cinética , Espectrometria de Massas , Nanopartículas/ultraestrutura , Polímeros/química , Polivinil/química , Espectrometria por Raios X , Sulfonas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA