Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 113
Filtrar
Mais filtros

País/Região como assunto
Intervalo de ano de publicação
1.
Nat Rev Neurosci ; 23(4): 215-230, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35228741

RESUMO

The discovery of insulin in 1921 revolutionized the treatment of diabetes and paved the way for numerous studies on hormone signalling networks and actions in peripheral tissues and in the central nervous system. Impaired insulin signalling, a hallmark of diabetes, is now established as a key component of Alzheimer disease (AD) pathology. Here, we review evidence showing that brain inflammation and activation of cellular stress response mechanisms comprise molecular underpinnings of impaired brain insulin signalling in AD and integrate impaired insulin signalling with AD pathology. Further, we highlight that insulin resistance is an important component of allostatic load and that allostatic overload can trigger insulin resistance. This bidirectional association between impaired insulin signalling and allostatic overload favours medical conditions that increase the risk of AD, including diabetes, obesity, depression, and cardiovascular and cerebrovascular diseases. Finally, we discuss how the integration of biological, social and lifestyle factors throughout the lifespan can contribute to the development of AD, underscoring the potential of social and lifestyle interventions to preserve brain health and prevent or delay AD.


Assuntos
Alostase , Doença de Alzheimer , Resistência à Insulina , Encéfalo , Humanos , Insulina , Resistência à Insulina/fisiologia , Transdução de Sinais/fisiologia
2.
Brain ; 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38650574

RESUMO

Obesity is a chronic disease caused by excessive fat accumulation that impacts the body and brain health. Insufficient leptin or leptin receptor (LepR) are involved in the disease pathogenesis. Leptin is involved with several neurological processes, and it has critical developmental roles. We have previously demonstrated that leptin deficiency in early life leads to permanent developmental problems, including energy homeostasis imbalance, melanocortin and reproductive system alterations and brain mass reduction in young adult mice. Since in humans, obesity has been associated with brain atrophy and cognitive impairment, it is important to determine the long-term consequences of early life leptin deficiency in brain structure and memory function. Here, we demonstrate that leptin-deficient mice (LepOb) exhibit altered brain volume, decreased neurogenesis and memory impairment. Similar effects were observed in animals that do not express the LepR (LepRNull). Interestingly, restoring the expression of LepR in 10-week-old mice reverses brain atrophy, as well as neurogenesis and memory impairments in older animals. Our findings indicate that leptin deficiency impairs brain development and memory, which are reversible by restoring leptin signaling in adulthood.

3.
Mol Ther ; 31(2): 409-419, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36369741

RESUMO

The accumulation of soluble oligomers of the amyloid-ß peptide (AßOs) in the brain has been implicated in synapse failure and memory impairment in Alzheimer's disease. Here, we initially show that treatment with NUsc1, a single-chain variable-fragment antibody (scFv) that selectively targets a subpopulation of AßOs and shows minimal reactivity to Aß monomers and fibrils, prevents the inhibition of long-term potentiation in hippocampal slices and memory impairment induced by AßOs in mice. As a therapeutic approach for intracerebral antibody delivery, we developed an adeno-associated virus vector to drive neuronal expression of NUsc1 (AAV-NUsc1) within the brain. Transduction by AAV-NUsc1 induced NUsc1 expression and secretion in adult human brain slices and inhibited AßO binding to neurons and AßO-induced loss of dendritic spines in primary rat hippocampal cultures. Treatment of mice with AAV-NUsc1 prevented memory impairment induced by AßOs and, remarkably, reversed memory deficits in aged APPswe/PS1ΔE9 Alzheimer's disease model mice. These results support the feasibility of immunotherapy using viral vector-mediated gene delivery of NUsc1 or other AßO-specific single-chain antibodies as a potential therapeutic approach in Alzheimer's disease.


Assuntos
Doença de Alzheimer , Anticorpos de Cadeia Única , Camundongos , Ratos , Humanos , Animais , Idoso , Doença de Alzheimer/genética , Doença de Alzheimer/terapia , Doença de Alzheimer/metabolismo , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/metabolismo , Peptídeos beta-Amiloides/genética , Peptídeos beta-Amiloides/metabolismo , Sinapses/metabolismo , Neurônios/metabolismo , Transtornos da Memória/genética , Transtornos da Memória/terapia
4.
Alzheimers Dement ; 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934107

RESUMO

INTRODUCTION: Impaired brain protein synthesis, synaptic plasticity, and memory are major hallmarks of Alzheimer's disease (AD). The ketamine metabolite (2R,6R)-hydroxynorketamine (HNK) has been shown to modulate protein synthesis, but its effects on memory in AD models remain elusive. METHODS: We investigated the effects of HNK on hippocampal protein synthesis, long-term potentiation (LTP), and memory in AD mouse models. RESULTS: HNK activated extracellular signal-regulated kinase 1/2 (ERK1/2), mechanistic target of rapamycin (mTOR), and p70S6 kinase 1 (S6K1)/ribosomal protein S6 signaling pathways. Treatment with HNK rescued hippocampal LTP and memory deficits in amyloid-ß oligomers (AßO)-infused mice in an ERK1/2-dependent manner. Treatment with HNK further corrected aberrant transcription, LTP and memory in aged APP/PS1 mice. DISCUSSION: Our findings demonstrate that HNK induces signaling and transcriptional responses that correct synaptic and memory deficits in AD mice. These results raise the prospect that HNK could serve as a therapeutic approach in AD. HIGHLIGHTS: The ketamine metabolite HNK activates hippocampal ERK/mTOR/S6 signaling pathways. HNK corrects hippocampal synaptic and memory defects in two mouse models of AD. Rescue of synaptic and memory impairments by HNK depends on ERK signaling. HNK corrects aberrant transcriptional signatures in APP/PS1 mice.

5.
Alzheimers Dement ; 19(6): 2595-2604, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36465055

RESUMO

INTRODUCTION: Depression is frequent among older adults and is a risk factor for dementia. Identifying molecular links between depression and dementia is necessary to shed light on shared disease mechanisms. Reduced brain-derived neurotrophic factor (BDNF) and neuroinflammation are implicated in the pathophysiology of depression and dementia. The exercise-induced hormone, irisin, increases BDNF and improves cognition in animal models of Alzheimer's disease. Lipoxin A4 is a lipid mediator with anti-inflammatory activity. However, the roles of irisin and lipoxin A4 in depression remain to be determined. METHODS: In the present study, blood and CSF were collected from 61 elderly subjects, including individuals with and without cognitive impairment. Screening for symptoms of depression was performed using the 15-item Geriatric Depression Scale (GDS-15). RESULTS: CSF irisin and lipoxin A4 were positively correlated and reduced, along with a trend of BDNF reduction, in elderly individuals with depression, similar to previous observations in patients with dementia. DISCUSSION: Our findings provide novel insight into shared molecular signatures connecting depression and dementia.


Assuntos
Doença de Alzheimer , Lipoxinas , Animais , Depressão/psicologia , Fator Neurotrófico Derivado do Encéfalo , Fibronectinas , Brasil
6.
Alzheimers Dement ; 19(12): 5418-5436, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37204850

RESUMO

INTRODUCTION: Extracellular vesicles (EVs) have been implicated in the spread of neuropathology in Alzheimer's disease (AD), but their involvement in behavioral outcomes linked to AD remains to be determined. METHODS: EVs isolated from post mortem brain tissue from control, AD, or frontotemporal dementia (FTD) donors, as well as from APP/PS1 mice, were injected into the hippocampi of wild-type (WT) or a humanized Tau mouse model (hTau/mTauKO). Memory tests were carried out. Differentially expressed proteins in EVs were assessed by proteomics. RESULTS: Both AD-EVs and APP/PS1-EVs trigger memory impairment in WT mice. We further demonstrate that AD-EVs and FTD-EVs carry Tau protein, present altered protein composition associated with synapse regulation and transmission, and trigger memory impairment in hTau/mTauKO mice. DISCUSSION: Results demonstrate that AD-EVs and FTD-EVs have negative impacts on memory in mice and suggest that, in addition to spreading pathology, EVs may contribute to memory impairment in AD and FTD. HIGHLIGHTS: Aß was detected in EVs from post mortem AD brain tissue and APP/PS1 mice. Tau was enriched in EVs from post mortem AD, PSP and FTD brain tissue. AD-derived EVs and APP/PS1-EVs induce cognitive impairment in wild-type (WT) mice. AD- and FTD-derived EVs induce cognitive impairment in humanized Tau mice. Proteomics findings associate EVs with synapse dysregulation in tauopathies.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Vesículas Extracelulares , Demência Frontotemporal , Camundongos , Animais , Doença de Alzheimer/patologia , Proteoma , Encéfalo/patologia , Disfunção Cognitiva/complicações , Transtornos da Memória , Sinapses/metabolismo , Vesículas Extracelulares/metabolismo , Camundongos Transgênicos , Modelos Animais de Doenças , Peptídeos beta-Amiloides/metabolismo
7.
J Neuroinflammation ; 19(1): 303, 2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36527099

RESUMO

BACKGROUND: Considerable evidence indicates that a signaling crosstalk between the brain and periphery plays important roles in neurological disorders, and that both acute and chronic peripheral inflammation can produce brain changes leading to cognitive impairments. Recent clinical and epidemiological studies have revealed an increased risk of cognitive impairment and dementia in individuals with impaired pulmonary function. However, the mechanistic underpinnings of this association remain unknown. Exposure to SiO2 (silica) particles triggers lung inflammation, including infiltration by peripheral immune cells and upregulation of pro-inflammatory cytokines. We here utilized a mouse model of lung silicosis to investigate the crosstalk between lung inflammation and memory. METHODS: Silicosis was induced by intratracheal administration of a single dose of 2.5 mg SiO2/kg in mice. Molecular and behavioral measurements were conducted 24 h and 15 days after silica administration. Lung and hippocampal inflammation were investigated by histological analysis and by determination of pro-inflammatory cytokines. Hippocampal synapse damage, amyloid-ß (Aß) peptide content and phosphorylation of Akt, a proxy of hippocampal insulin signaling, were investigated by Western blotting and ELISA. Memory was assessed using the open field and novel object recognition tests. RESULTS: Administration of silica induced alveolar collapse, lung infiltration by polymorphonuclear (PMN) cells, and increased lung pro-inflammatory cytokines. Lung inflammation was followed by upregulation of hippocampal pro-inflammatory cytokines, synapse damage, accumulation of the Aß peptide, and memory impairment in mice. CONCLUSION: The current study identified a crosstalk between lung and brain inflammatory responses leading to hippocampal synapse damage and memory impairment after exposure to a single low dose of silica in mice.


Assuntos
Pneumonia , Silicose , Animais , Camundongos , Dióxido de Silício/toxicidade , Camundongos Endogâmicos C57BL , Silicose/patologia , Pneumonia/induzido quimicamente , Pneumonia/patologia , Inflamação/induzido quimicamente , Inflamação/patologia , Pulmão/patologia , Sinapses/patologia , Peptídeos beta-Amiloides , Hipocampo/patologia , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/patologia , Citocinas
8.
J Pathol ; 254(3): 244-253, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33797777

RESUMO

Amyloid plaques and neurofibrillary tangles composed of hyperphosphorylated tau are important contributors to Alzheimer's disease (AD). Tau also impacts pancreatic beta cell function and glucose homeostasis. Amyloid deposits composed of islet amyloid polypeptide (IAPP) are a pathological feature of type 2 diabetes (T2D). The current study investigates the role of human tau (hTau) in combination with human IAPP (hIAPP) as a potential mechanism connecting AD and T2D. Transgenic mice expressing hTau and hIAPP in the absence of murine tau were generated to determine the impact of these pathological factors on glucose metabolism. Co-expression of hIAPP and hTau resulted in mice with increased hyperglycaemia, insulin resistance, and glucose intolerance. The hTau-hIAPP mice also exhibited reduced beta cell area, increased amyloid deposition, impaired insulin processing, and reduced insulin content in islets. Tau phosphorylation also increased after stimulation with high glucose. In addition, brain insulin content and signalling were reduced, and tau phosphorylation was increased in these animals. These data support a link between tau and IAPP amyloid, which seems to act co-ordinately to impair beta cell function and glucose homeostasis, and suggest that the combined pathological actions of these proteins may be a potential mechanism connecting AD and T2D. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Diabetes Mellitus Experimental/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucose/metabolismo , Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Proteínas tau/metabolismo , Animais , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 2/patologia , Intolerância à Glucose/metabolismo , Humanos , Hiperglicemia/metabolismo , Resistência à Insulina/fisiologia , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/patologia , Camundongos , Camundongos Transgênicos
9.
J Neuroinflammation ; 18(1): 54, 2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33612100

RESUMO

BACKGROUND: The lack of effective treatments for Alzheimer's disease (AD) reflects an incomplete understanding of disease mechanisms. Alterations in proteins involved in mitochondrial dynamics, an essential process for mitochondrial integrity and function, have been reported in AD brains. Impaired mitochondrial dynamics causes mitochondrial dysfunction and has been associated with cognitive impairment in AD. Here, we investigated a possible link between pro-inflammatory interleukin-1 (IL-1), mitochondrial dysfunction, and cognitive impairment in AD models. METHODS: We exposed primary hippocampal cell cultures to amyloid-ß oligomers (AßOs) and carried out AßO infusions into the lateral cerebral ventricle of cynomolgus macaques to assess the impact of AßOs on proteins that regulate mitochondrial dynamics. Where indicated, primary cultures were pre-treated with mitochondrial division inhibitor 1 (mdivi-1), or with anakinra, a recombinant interleukin-1 receptor (IL-1R) antagonist used in the treatment of rheumatoid arthritis. Cognitive impairment was investigated in C57BL/6 mice that received an intracerebroventricular (i.c.v.) infusion of AßOs in the presence or absence of mdivi-1. To assess the role of interleukin-1 beta (IL-1ß) in AßO-induced alterations in mitochondrial proteins and memory impairment, interleukin receptor-1 knockout (Il1r1-/-) mice received an i.c.v. infusion of AßOs. RESULTS: We report that anakinra prevented AßO-induced alteration in mitochondrial dynamics proteins in primary hippocampal cultures. Altered levels of proteins involved in mitochondrial fusion and fission were observed in the brains of cynomolgus macaques that received i.c.v. infusions of AßOs. The mitochondrial fission inhibitor, mdivi-1, alleviated synapse loss and cognitive impairment induced by AßOs in mice. In addition, AßOs failed to cause alterations in expression of mitochondrial dynamics proteins or memory impairment in Il1r1-/- mice. CONCLUSION: These findings indicate that IL-1ß mediates the impact of AßOs on proteins involved in mitochondrial dynamics and that strategies aimed to prevent pathological alterations in those proteins may counteract synapse loss and cognitive impairment in AD.


Assuntos
Peptídeos beta-Amiloides/toxicidade , Interleucina-1beta/biossíntese , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/metabolismo , Dinâmica Mitocondrial/fisiologia , Fragmentos de Peptídeos/toxicidade , Animais , Feminino , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Macaca fascicularis , Masculino , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Potencial da Membrana Mitocondrial/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Dinâmica Mitocondrial/efeitos dos fármacos , Ratos
10.
Alzheimers Dement ; 17(2): 295-313, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33634602

RESUMO

Across Latin American and Caribbean countries (LACs), the fight against dementia faces pressing challenges, such as heterogeneity, diversity, political instability, and socioeconomic disparities. These can be addressed more effectively in a collaborative setting that fosters open exchange of knowledge. In this work, the Latin American and Caribbean Consortium on Dementia (LAC-CD) proposes an agenda for integration to deliver a Knowledge to Action Framework (KtAF). First, we summarize evidence-based strategies (epidemiology, genetics, biomarkers, clinical trials, nonpharmacological interventions, networking, and translational research) and align them to current global strategies to translate regional knowledge into transformative actions. Then we characterize key sources of complexity (genetic isolates, admixture in populations, environmental factors, and barriers to effective interventions), map them to the above challenges, and provide the basic mosaics of knowledge toward a KtAF. Finally, we describe strategies supporting the knowledge creation stage that underpins the translational impact of KtAF.


Assuntos
Demência/terapia , Prática Clínica Baseada em Evidências , Biomarcadores , Demência/epidemiologia , Humanos , América Latina/epidemiologia , Fatores Socioeconômicos
11.
J Neurochem ; 155(6): 602-611, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32396989

RESUMO

The proportion of elderly populations is rapidly booming, and human lifespan has considerably increased in the past century because of scientific and medical advances. However, the winds of change brought by the 21st century made sedentarism one of the factors that renders the brain vulnerable to age-related chronic diseases, such as Alzheimer's disease (AD). Conversely, physical exercise has been shown to stimulate molecular mechanisms beneficial to cognition. Here, we review evidence showing the positive effects of physical exercise in the brain. We further discuss recent evidence that irisin, a myokine stimulated by physical exercise derived from fibronectin type III domain-containing protein 5 (FNDC5) transmembrane protein, has neuroprotective actions in the brain. Lastly, we highlight the importance of the crosstalk between the periphery and the brain in cognition and the therapeutic potential of FNDC5/irisin in AD.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/prevenção & controle , Exercício Físico/fisiologia , Fibronectinas/metabolismo , Memória/fisiologia , Doença de Alzheimer/psicologia , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Exercício Físico/psicologia , Humanos , Condicionamento Físico Animal/métodos , Condicionamento Físico Animal/fisiologia
12.
J Biol Chem ; 293(6): 1957-1975, 2018 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-29284679

RESUMO

Alzheimer's disease (AD) is a disabling and highly prevalent neurodegenerative condition, for which there are no effective therapies. Soluble oligomers of the amyloid-ß peptide (AßOs) are thought to be proximal neurotoxins involved in early neuronal oxidative stress and synapse damage, ultimately leading to neurodegeneration and memory impairment in AD. The aim of the current study was to evaluate the neuroprotective potential of mesenchymal stem cells (MSCs) against the deleterious impact of AßOs on hippocampal neurons. To this end, we established transwell cocultures of rat hippocampal neurons and MSCs. We show that MSCs and MSC-derived extracellular vesicles protect neurons against AßO-induced oxidative stress and synapse damage, revealed by loss of pre- and postsynaptic markers. Protection by MSCs entails three complementary mechanisms: 1) internalization and degradation of AßOs; 2) release of extracellular vesicles containing active catalase; and 3) selective secretion of interleukin-6, interleukin-10, and vascular endothelial growth factor to the medium. Results support the notion that MSCs may represent a promising alternative for cell-based therapies in AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Vesículas Extracelulares/metabolismo , Hipocampo/citologia , Células-Tronco Mesenquimais/citologia , Neurônios/metabolismo , Estresse Oxidativo , Sinapses/metabolismo , Doença de Alzheimer/genética , Peptídeos beta-Amiloides/química , Animais , Células Cultivadas , Técnicas de Cocultura , Vesículas Extracelulares/genética , Hipocampo/metabolismo , Humanos , Interleucina-10/metabolismo , Interleucina-6/metabolismo , Masculino , Células-Tronco Mesenquimais/metabolismo , Neurônios/citologia , Ratos , Ratos Wistar , Fator A de Crescimento do Endotélio Vascular/metabolismo
13.
FASEB J ; 32(6): 3166-3173, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29401605

RESUMO

The microtubule-associated protein tau is highly expressed in pancreatic islets. Abnormally phosphorylated tau aggregates assemble into neurofibrillary tangles linked to Alzheimer's disease pathology and has also been found in islets of patients with type 2 diabetes. However, the significance of tau in islet function remains relatively unexplored. Therefore, we investigated the role of tau on ß cell function and glucose homeostasis using tau knockout (tauKO) mice. TauKO mice were hyperglycemic and glucose intolerant at an early age. Islet insulin content was reduced and proinsulin levels were significantly elevated in tauKO mice, resulting in impaired glucose-stimulated insulin secretion. Loss of tau also resulted in increased epididymal fat mass and leptin levels, reduced glucose production, and insulin resistance at later ages, leading to complete onset of diabetes. Transgenic expression of human tau in islets was unable to rescue those defects in glucose regulation, indicating structural and/or functional differences between mouse and human tau. Cumulatively, these results suggest an important role for tau in the proper maintenance of pancreatic ß cell function and glucose homeostasis.-Wijesekara, N., Gonçalves, R. A., Ahrens, R., De Felice, F. G., Fraser, P. E. Tau ablation in mice leads to pancreatic ß cell dysfunction and glucose intolerance.


Assuntos
Diabetes Mellitus Tipo 2/metabolismo , Intolerância à Glucose/metabolismo , Glucose/metabolismo , Células Secretoras de Insulina/metabolismo , Proteínas tau/metabolismo , Animais , Diabetes Mellitus Tipo 2/genética , Glucose/genética , Intolerância à Glucose/genética , Intolerância à Glucose/patologia , Humanos , Células Secretoras de Insulina/patologia , Leptina/genética , Leptina/metabolismo , Masculino , Camundongos , Camundongos Knockout , Proinsulina/genética , Proinsulina/metabolismo , Especificidade da Espécie , Proteínas tau/genética
14.
J Pathol ; 245(1): 85-100, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29435980

RESUMO

Alzheimer's disease (AD) is a devastating neurological disorder that still lacks an effective treatment, and this has stimulated an intense pursuit of disease-modifying therapeutics. Given the increasingly recognized link between AD and defective brain insulin signaling, we investigated the actions of liraglutide, a glucagon-like peptide-1 (GLP-1) analog marketed for treatment of type 2 diabetes, in experimental models of AD. Insulin receptor pathology is an important feature of AD brains that impairs the neuroprotective actions of central insulin signaling. Here, we show that liraglutide prevented the loss of brain insulin receptors and synapses, and reversed memory impairment induced by AD-linked amyloid-ß oligomers (AßOs) in mice. Using hippocampal neuronal cultures, we determined that the mechanism of neuroprotection by liraglutide involves activation of the PKA signaling pathway. Infusion of AßOs into the lateral cerebral ventricle of non-human primates (NHPs) led to marked loss of insulin receptors and synapses in brain regions related to memory. Systemic treatment of NHPs with liraglutide provided partial protection, decreasing AD-related insulin receptor, synaptic, and tau pathology in specific brain regions. Synapse damage and elimination are amongst the earliest known pathological changes and the best correlates of memory impairment in AD. The results illuminate mechanisms of neuroprotection by liraglutide, and indicate that GLP-1 receptor activation may be harnessed to protect brain insulin receptors and synapses in AD. © 2018 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of Pathological Society of Great Britain and Ireland.


Assuntos
Disfunção Cognitiva/tratamento farmacológico , Liraglutida/farmacologia , Memória/efeitos dos fármacos , Receptor de Insulina/efeitos dos fármacos , Sinapses/patologia , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Animais , Modelos Animais de Doenças , Hipocampo/efeitos dos fármacos , Hipoglicemiantes/farmacologia , Masculino , Camundongos , Receptor de Insulina/metabolismo , Sinapses/efeitos dos fármacos
15.
J Neurosci ; 37(28): 6797-6809, 2017 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-28607171

RESUMO

Alzheimer's disease (AD) is characterized by progressive cognitive decline, increasingly attributed to neuronal dysfunction induced by amyloid-ß oligomers (AßOs). Although the impact of AßOs on neurons has been extensively studied, only recently have the possible effects of AßOs on astrocytes begun to be investigated. Given the key roles of astrocytes in synapse formation, plasticity, and function, we sought to investigate the impact of AßOs on astrocytes, and to determine whether this impact is related to the deleterious actions of AßOs on synapses. We found that AßOs interact with astrocytes, cause astrocyte activation and trigger abnormal generation of reactive oxygen species, which is accompanied by impairment of astrocyte neuroprotective potential in vitro We further show that both murine and human astrocyte conditioned media (CM) increase synapse density, reduce AßOs binding, and prevent AßO-induced synapse loss in cultured hippocampal neurons. Both a neutralizing anti-transforming growth factor-ß1 (TGF-ß1) antibody and siRNA-mediated knockdown of TGF-ß1, previously identified as an important synaptogenic factor secreted by astrocytes, abrogated the protective action of astrocyte CM against AßO-induced synapse loss. Notably, TGF-ß1 prevented hippocampal dendritic spine loss and memory impairment in mice that received an intracerebroventricular infusion of AßOs. Results suggest that astrocyte-derived TGF-ß1 is part of an endogenous mechanism that protects synapses against AßOs. By demonstrating that AßOs decrease astrocyte ability to protect synapses, our results unravel a new mechanism underlying the synaptotoxic action of AßOs in AD.SIGNIFICANCE STATEMENT Alzheimer's disease is characterized by progressive cognitive decline, mainly attributed to synaptotoxicity of the amyloid-ß oligomers (AßOs). Here, we investigated the impact of AßOs in astrocytes, a less known subject. We show that astrocytes prevent synapse loss induced by AßOs, via production of transforming growth factor-ß1 (TGF-ß1). We found that AßOs trigger morphological and functional alterations in astrocytes, and impair their neuroprotective potential. Notably, TGF-ß1 reduced hippocampal dendritic spine loss and memory impairment in mice that received intracerebroventricular infusions of AßOs. Our results describe a new mechanism underlying the toxicity of AßOs and indicate novel therapeutic targets for Alzheimer's disease, mainly focused on TGF-ß1 and astrocytes.


Assuntos
Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Astrócitos/metabolismo , Sinapses/metabolismo , Sinapses/patologia , Fator de Crescimento Transformador beta1/metabolismo , Peptídeos beta-Amiloides , Animais , Células Cultivadas , Humanos , Masculino , Camundongos , Espécies Reativas de Oxigênio/metabolismo
16.
J Biol Chem ; 292(18): 7395-7406, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28302722

RESUMO

AMP-activated kinase (AMPK) is a key player in energy sensing and metabolic reprogramming under cellular energy restriction. Several studies have linked impaired AMPK function to peripheral metabolic diseases such as diabetes. However, the impact of neurological disorders, such as Alzheimer disease (AD), on AMPK function and downstream effects of altered AMPK activity on neuronal metabolism have been investigated only recently. Here, we report the impact of Aß oligomers (AßOs), synaptotoxins that accumulate in AD brains, on neuronal AMPK activity. Short-term exposure of cultured rat hippocampal neurons or ex vivo human cortical slices to AßOs transiently decreased intracellular ATP levels and AMPK activity, as evaluated by its phosphorylation at threonine residue 172 (AMPK-Thr(P)172). The AßO-dependent reduction in AMPK-Thr(P)172 levels was mediated by glutamate receptors of the N-methyl-d-aspartate (NMDA) subtype and resulted in removal of glucose transporters (GLUTs) from the surfaces of dendritic processes in hippocampal neurons. Importantly, insulin prevented the AßO-induced inhibition of AMPK. Our results establish a novel toxic impact of AßOs on neuronal metabolism and suggest that AßO-induced, NMDA receptor-mediated AMPK inhibition may play a key role in early brain metabolic defects in AD.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Hipocampo/metabolismo , Neurônios/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Proteínas Quinases Ativadas por AMP/genética , Trifosfato de Adenosina/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Precursor de Proteína beta-Amiloide/genética , Animais , Proteínas Facilitadoras de Transporte de Glucose/genética , Proteínas Facilitadoras de Transporte de Glucose/metabolismo , Hipocampo/patologia , Humanos , Insulina/farmacologia , Neurônios/patologia , Fragmentos de Peptídeos/genética , Ratos , Receptores de N-Metil-D-Aspartato/genética , Receptores de N-Metil-D-Aspartato/metabolismo
17.
J Biol Chem ; 292(18): 7327-7337, 2017 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-28283575

RESUMO

Brain accumulation of the amyloid-ß protein (Aß) and synapse loss are neuropathological hallmarks of Alzheimer disease (AD). Aß oligomers (AßOs) are synaptotoxins that build up in the brains of patients and are thought to contribute to memory impairment in AD. Thus, identification of novel synaptic components that are targeted by AßOs may contribute to the elucidation of disease-relevant mechanisms. Trans-synaptic interactions between neurexins (Nrxs) and neuroligins (NLs) are essential for synapse structure, stability, and function, and reduced NL levels have been associated recently with AD. Here we investigated whether the interaction of AßOs with Nrxs or NLs mediates synapse damage and cognitive impairment in AD models. We found that AßOs interact with different isoforms of Nrx and NL, including Nrx2α and NL1. Anti-Nrx2α and anti-NL1 antibodies reduced AßO binding to hippocampal neurons and prevented AßO-induced neuronal oxidative stress and synapse loss. Anti-Nrx2α and anti-NL1 antibodies further blocked memory impairment induced by AßOs in mice. The results indicate that Nrx2α and NL1 are targets of AßOs and that prevention of this interaction reduces the deleterious impact of AßOs on synapses and cognition. Identification of Nrx2α and NL1 as synaptic components that interact with AßOs may pave the way for development of novel approaches aimed at halting synapse failure and cognitive loss in AD.


Assuntos
Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fragmentos de Peptídeos/metabolismo , Agregação Patológica de Proteínas/metabolismo , Sinapses/metabolismo , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/genética , Animais , Encéfalo/patologia , Moléculas de Adesão Celular Neuronais/genética , Células Cultivadas , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Proteínas do Tecido Nervoso/genética , Fragmentos de Peptídeos/genética , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/patologia , Ratos , Ratos Wistar , Sinapses/genética
18.
J Neurosci ; 36(48): 12106-12116, 2016 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-27903721

RESUMO

Considerable clinical and epidemiological evidence links Alzheimer's disease (AD) and depression. However, the molecular mechanisms underlying this connection are largely unknown. We reported recently that soluble Aß oligomers (AßOs), toxins that accumulate in AD brains and are thought to instigate synapse damage and memory loss, induce depressive-like behavior in mice. Here, we report that the mechanism underlying this action involves AßO-induced microglial activation, aberrant TNF-α signaling, and decreased brain serotonin levels. Inactivation or ablation of microglia blocked the increase in brain TNF-α and abolished depressive-like behavior induced by AßOs. Significantly, we identified serotonin as a negative regulator of microglial activation. Finally, AßOs failed to induce depressive-like behavior in Toll-like receptor 4-deficient mice and in mice harboring a nonfunctional TLR4 variant in myeloid cells. Results establish that AßOs trigger depressive-like behavior via a double impact on brain serotonin levels and microglial activation, unveiling a cross talk between brain innate immunity and serotonergic signaling as a key player in mood alterations in AD. SIGNIFICANCE STATEMENT: Alzheimer's disease (AD) is a progressive neurodegenerative disorder and the main cause of dementia in the world. Brain accumulation of amyloid-ß oligomers (AßOs) is a major feature in the pathogenesis of AD. Although clinical and epidemiological data suggest a strong connection between AD and depression, the underlying mechanisms linking these two disorders remain largely unknown. Here, we report that aberrant activation of the brain innate immunity and decreased serotonergic tonus in the brain are key players in AßO-induced depressive-like behavior in mice. Our findings may open up new possibilities for the development of effective therapeutics for AD and depression aimed at modulating microglial function.


Assuntos
Doença de Alzheimer/imunologia , Peptídeos beta-Amiloides/imunologia , Encéfalo/imunologia , Depressão/imunologia , Imunidade Inata/imunologia , Receptor Cross-Talk/imunologia , Serotonina/imunologia , Animais , Comportamento Animal , Depressão/etiologia , Masculino , Camundongos , Camundongos Endogâmicos C3H , Microglia/imunologia , Fator de Necrose Tumoral alfa/imunologia
19.
Brain Behav Immun ; 64: 140-151, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28412140

RESUMO

It is increasingly recognized that sleep disturbances and Alzheimer's disease (AD) share a bidirectional relationship. AD patients exhibit sleep problems and alterations in the regulation of circadian rhythms; conversely, poor quality of sleep increases the risk of development of AD. The aim of the current study was to determine whether chronic sleep restriction potentiates the brain impact of amyloid-ß oligomers (AßOs), toxins that build up in AD brains and are thought to underlie synapse damage and memory impairment. We further investigated whether alterations in levels of pro-inflammatory mediators could play a role in memory impairment in sleep-restricted mice. We found that a single intracerebroventricular (i.c.v.) infusion of AßOs disturbed sleep pattern in mice. Conversely, chronically sleep-restricted mice exhibited higher brain expression of pro-inflammatory mediators, reductions in levels of pre- and post-synaptic marker proteins, and exhibited increased susceptibility to the impact of i.c.v. infusion of a sub-toxic dose of AßOs (1pmol) on performance in the novel object recognition memory task. Sleep-restricted mice further exhibited an increase in brain TNF-α levels in response to AßOs. Interestingly, memory impairment in sleep-restricted AßO-infused mice was prevented by treatment with the TNF-α neutralizing monoclonal antibody, infliximab. Results substantiate the notion of a dual relationship between sleep and AD, whereby AßOs disrupt sleep/wake patterns and chronic sleep restriction increases brain vulnerability to AßOs, and point to a key role of brain inflammation in increased susceptibility to AßOs in sleep-restricted mice.


Assuntos
Peptídeos beta-Amiloides/administração & dosagem , Disfunção Cognitiva/fisiopatologia , Encefalite/fisiopatologia , Privação do Sono/patologia , Privação do Sono/fisiopatologia , Sinapses/patologia , Animais , Disfunção Cognitiva/etiologia , Encefalite/etiologia , Infliximab/administração & dosagem , Masculino , Camundongos , Privação do Sono/induzido quimicamente
20.
J Neurosci ; 34(41): 13629-43, 2014 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-25297091

RESUMO

Alzheimer's disease (AD) is a devastating neurodegenerative disorder and a major medical problem. Here, we have investigated the impact of amyloid-ß (Aß) oligomers, AD-related neurotoxins, in the brains of rats and adult nonhuman primates (cynomolgus macaques). Soluble Aß oligomers are known to accumulate in the brains of AD patients and correlate with disease-associated cognitive dysfunction. When injected into the lateral ventricle of rats and macaques, Aß oligomers diffused into the brain and accumulated in several regions associated with memory and cognitive functions. Cardinal features of AD pathology, including synapse loss, tau hyperphosphorylation, astrocyte and microglial activation, were observed in regions of the macaque brain where Aß oligomers were abundantly detected. Most importantly, oligomer injections induced AD-type neurofibrillary tangle formation in the macaque brain. These outcomes were specifically associated with Aß oligomers, as fibrillar amyloid deposits were not detected in oligomer-injected brains. Human and macaque brains share significant similarities in terms of overall architecture and functional networks. Thus, generation of a macaque model of AD that links Aß oligomers to tau and synaptic pathology has the potential to greatly advance our understanding of mechanisms centrally implicated in AD pathogenesis. Furthermore, development of disease-modifying therapeutics for AD has been hampered by the difficulty in translating therapies that work in rodents to humans. This new approach may be a highly relevant nonhuman primate model for testing therapeutic interventions for AD.


Assuntos
Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/toxicidade , Fragmentos de Peptídeos/toxicidade , Doença de Alzheimer/induzido quimicamente , Peptídeos beta-Amiloides/administração & dosagem , Animais , Apoptose/efeitos dos fármacos , Astrócitos/patologia , Injeções Intraventriculares , Macaca fascicularis , Masculino , Microglia/patologia , Microinjeções , Emaranhados Neurofibrilares/patologia , Fragmentos de Peptídeos/administração & dosagem , Ratos , Ratos Wistar , Sinapses/patologia , Sinapses/fisiologia , Sinapses/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA