Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Rev Mol Cell Biol ; 14(7): 430-42, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23719537

RESUMO

Integrins mediate cell-matrix and cell-cell interactions and integrate extracellular cues to the cytoskeleton and cellular signalling pathways. Integrin function on the cell surface is regulated by their activity switching such that intracellular proteins interacting with the integrin cytoplasmic domains increase or decrease integrin-ligand binding affinity. It is widely accepted that integrin activation by specific proteins is essential for cell adhesion and integrin linkage to the actin cytoskeleton. However, there is also increasing evidence that integrin-inactivating proteins are crucial for appropriate integrin function in vitro and in vivo and that the regulation of integrin-ligand interactions is a fine-tuned balancing act between inactivation and activation.


Assuntos
Integrinas/fisiologia , Transdução de Sinais , Sequência de Aminoácidos , Animais , Humanos , Inflamação/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Dados de Sequência Molecular , Neoplasias/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional
2.
BMC Biol ; 19(1): 66, 2021 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-33832485

RESUMO

BACKGROUND: ESCRT-III proteins are involved in many membrane remodeling processes including multivesicular body biogenesis as first discovered in yeast. In humans, ESCRT-III CHMP2 exists as two isoforms, CHMP2A and CHMP2B, but their physical characteristics have not been compared yet. RESULTS: Here, we use a combination of techniques on biomimetic systems and purified proteins to study their affinity and effects on membranes. We establish that CHMP2B binding is enhanced in the presence of PI(4,5)P2 lipids. In contrast, CHMP2A does not display lipid specificity and requires CHMP3 for binding significantly to membranes. On the micrometer scale and at moderate bulk concentrations, CHMP2B forms a reticular structure on membranes whereas CHMP2A (+CHMP3) binds homogeneously. Thus, CHMP2A and CHMP2B unexpectedly induce different mechanical effects to membranes: CHMP2B strongly rigidifies them while CHMP2A (+CHMP3) has no significant effect. CONCLUSIONS: We therefore conclude that CHMP2B and CHMP2A exhibit different mechanical properties and might thus contribute differently to the diverse ESCRT-III-catalyzed membrane remodeling processes.


Assuntos
Membrana Celular/fisiologia , Complexos Endossomais de Distribuição Requeridos para Transporte/genética , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Polimerização
3.
EMBO J ; 36(2): 165-182, 2017 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-27974362

RESUMO

SHARPIN is a widely expressed multifunctional protein implicated in cancer, inflammation, linear ubiquitination and integrin activity inhibition; however, its contribution to epithelial homeostasis remains poorly understood. Here, we examined the role of SHARPIN in mammary gland development, a process strongly regulated by epithelial-stromal interactions. Mice lacking SHARPIN expression in all cells (Sharpincpdm), and mice with a stromal (S100a4-Cre) deletion of Sharpin, have reduced mammary ductal outgrowth during puberty. In contrast, Sharpincpdm mammary epithelial cells transplanted in vivo into wild-type stroma, fully repopulate the mammary gland fat pad, undergo unperturbed ductal outgrowth and terminal differentiation. Thus, SHARPIN is required in mammary gland stroma during development. Accordingly, stroma adjacent to invading mammary ducts of Sharpincpdm mice displayed reduced collagen arrangement and extracellular matrix (ECM) stiffness. Moreover, Sharpincpdm mammary gland stromal fibroblasts demonstrated defects in collagen fibre assembly, collagen contraction and degradation in vitro Together, these data imply that SHARPIN regulates the normal invasive mammary gland branching morphogenesis in an epithelial cell extrinsic manner by controlling the organisation of the stromal ECM.


Assuntos
Proteínas de Transporte/metabolismo , Diferenciação Celular , Colágeno/metabolismo , Glândulas Mamárias Humanas/crescimento & desenvolvimento , Animais , Matriz Extracelular/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Knockout
4.
J Cell Sci ; 132(4)2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-29967034

RESUMO

Endosomal sorting complexes required for transport (ESCRT)-III family proteins catalyze membrane remodeling processes that stabilize and constrict membrane structures. It has been proposed that stable ESCRT-III complexes containing CHMP2B could establish diffusion barriers at the post-synaptic spine neck. In order to better understand this process, we developed a novel method based on fusion of giant unilamellar vesicles to reconstitute ESCRT-III proteins inside GUVs, from which membrane nanotubes are pulled. The new assay ensures that ESCRT-III proteins polymerize only when they become exposed to physiologically relevant membrane topology mimicking the complex geometry of post-synaptic spines. We establish that CHMP2B, both full-length and with a C-terminal deletion (ΔC), preferentially binds to membranes containing phosphatidylinositol 4,5-bisphosphate [PI(4,5)P2]. Moreover, we show that CHMP2B preferentially accumulates at the neck of membrane nanotubes, and provide evidence that CHMP2B-ΔC prevents the diffusion of PI(4,5)P2 lipids and membrane-bound proteins across the tube neck. This indicates that CHMP2B polymers formed at a membrane neck may function as a diffusion barrier, highlighting a potential important function of CHMP2B in maintaining synaptic spine structures.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Proteínas de Membrana/metabolismo , Lipossomas Unilamelares/metabolismo , Pareamento Cromossômico/fisiologia , Difusão , Escherichia coli , Proteínas do Tecido Nervoso/metabolismo , Coluna Vertebral/metabolismo
5.
J Cell Sci ; 132(4)2018 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-30072441

RESUMO

Integrin transmembrane receptors control a wide range of biological interactions by triggering the assembly of large multiprotein complexes at their cytoplasmic interface. Diverse methods have been used to investigate interactions between integrins and intracellular proteins, and predominantly include peptide-based pulldowns and biochemical immuno-isolations from detergent-solubilised cell lysates. However, quantitative methods to probe integrin-protein interactions in a more biologically relevant context where the integrin is embedded within a lipid bilayer have been lacking. Here, we describe 'protein-liposome interactions by flow cytometry' (denoted ProLIF), a technique to reconstitute recombinant integrin transmembrane domains (TMDs) and cytoplasmic tail (CT) fragments in liposomes as individual subunits or as αß heterodimers and, via flow cytometry, allow rapid and quantitative measurement of protein interactions with these membrane-embedded integrins. Importantly, the assay can analyse binding of fluorescent proteins directly from cell lysates without further purification steps. Moreover, the effect of membrane composition, such as PI(4,5)P2 incorporation, on protein recruitment to the integrin CTs can be analysed. ProLIF requires no specific instrumentation and can be applied to measure a broad range of membrane-dependent protein-protein interactions with the potential for high-throughput/multiplex analyses.This article has associated First Person interviews with the first authors of the paper (see doi: 10.1242/jcs.223644 and doi: 10.1242/jcs.223719).


Assuntos
Membrana Celular/metabolismo , Integrinas/metabolismo , Lipossomos/metabolismo , Proteolipídeos/metabolismo , Adesão Celular/fisiologia , Citoplasma/metabolismo , Dimerização , Citometria de Fluxo/métodos , Humanos , Ligação Proteica/fisiologia
6.
BMC Psychiatry ; 20(1): 287, 2020 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-32513140

RESUMO

BACKGROUND: Schizophrenia spectrum disorders (SSD) are ranked among the leading causes of disabilities worldwide. Many people with SSD spend most of their daily time being inactive, and this is related to the severity of negative symptoms. Here, we present the 3-year DiAPAson project aimed at (1) evaluating the daily time use among patients with SSD living in Residential Facilities (RFs) compared to outpatients with SSD and to the general population (Study 1); (2) evaluating the quality of staff-patient relationships, its association with specific patient outcomes and the quality of care provided in RFs (Study 2); and (3) assessing daily activity patterns in residential patients, outpatients with SSD and healthy controls using real-time methodologies (Study 3). METHODS: Study 1 will include 300 patients with SSD living in RFs and 300 outpatients; data obtained in these clinical populations will be compared with normative data obtained by the National Institute of Statistics (ISTAT) in the national survey on daily time use. Time use assessments will consist of daily diaries asking participants to retrospectively report time spent in different activities. In Study 2, a series of questionnaires will be administered to 300 residential patients (recruited for Study 1) to evaluate the quality of care and staff-patient relationships, level of well-being and burnout of RFs' staff, and quality of RFs using a European standardized questionnaire (QuIRC-SA). In Study 3, the daily time use will be evaluated in a subgroup of 50 residential patients, 50 outpatients and 50 healthy controls using the Experience Sampling Method approach (participants will complete a brief questionnaire -about time use, mood and perceived energy- on a smartphone 8 times a day for 1 week) to compare retrospective and real-time reports. Moreover, their level of physical activity, sleep patterns, and energy expenditure will be monitored through a multi-sensor device. DISCUSSION: This project is highly innovative because it combines different types of assessments (i.e., retrospective and real-time reports; multi-sensor monitoring) to trace an accurate picture of daily time use and levels of physical activity that will help identify the best therapeutic options promoting daily activities and physical exercise in patients with SSD. TRIAL REGISTRATION: ISRCTN registry ID ISRCTN21141466.


Assuntos
Exercício Físico , Relações Interpessoais , Qualidade da Assistência à Saúde , Esquizofrenia/epidemiologia , Adulto , Feminino , Humanos , Itália/epidemiologia , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Psicologia do Esquizofrênico , Comportamento Sedentário , Fatores de Tempo
7.
J Cell Sci ; 128(5): 839-52, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25663697

RESUMO

Integrins are a family of transmembrane cell surface molecules that constitute the principal adhesion receptors for the extracellular matrix (ECM) and are indispensable for the existence of multicellular organisms. In vertebrates, 24 different integrin heterodimers exist with differing substrate specificity and tissue expression. Integrin-extracellular-ligand interaction provides a physical anchor for the cell and triggers a vast array of intracellular signalling events that determine cell fate. Dynamic remodelling of adhesions, through rapid endocytic and exocytic trafficking of integrin receptors, is an important mechanism employed by cells to regulate integrin-ECM interactions, and thus cellular signalling, during processes such as cell migration, invasion and cytokinesis. The initial concept of integrin traffic as a means to translocate adhesion receptors within the cell has now been expanded with the growing appreciation that traffic is intimately linked to the cell signalling apparatus. Furthermore, endosomal pathways are emerging as crucial regulators of integrin stability and expression in cells. Thus, integrin traffic is relevant in a number of pathological conditions, especially in cancer. Nearly a decade ago we wrote a Commentary in Journal of Cell Science entitled 'Integrin traffic'. With the advances in the field, we felt it would be appropriate to provide the growing number of researchers interested in integrin traffic with an update.


Assuntos
Matriz Extracelular/metabolismo , Integrinas/metabolismo , Transdução de Sinais/fisiologia , Animais , Adesão Celular/fisiologia , Matriz Extracelular/genética , Humanos , Integrinas/genética , Transporte Proteico/fisiologia
8.
Traffic ; 15(1): 104-21, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24107188

RESUMO

Endomembrane trafficking is one of the most prominent cytological features of eukaryotes. Given their widespread distribution and specialization, coiled-coil domains, coatomer domains, small GTPases and Longin domains are considered primordial 'building blocks' of the membrane trafficking machineries. Longin domains are conserved across eukaryotes and were likely to be present in the Last Eukaryotic Common Ancestor. The Longin fold is based on the α-ß-α sandwich architecture and a unique topology, possibly accounting for the special adaptation to the eukaryotic trafficking machinery. The ancient Per ARNT Sim (PAS) and cGMP-specific phosphodiesterases, Adenylyl cyclases and FhlA (GAF) family domains show a similar architecture, and the identification of prokaryotic counterparts of GAF domains involved in trafficking provides an additional connection for the endomembrane system back into the pre-eukaryotic world. Proteome-wide, comparative bioinformatic analyses of the domains reveal three binding regions (A, B and C) mediating either specific or conserved protein-protein interactions. While the A region mediates intra- and inter-molecular interactions, the B region is involved in binding small GTPases, thus providing an evolutionary connection among major building blocks in the endomembrane system. Finally, we propose that the peculiar interaction surface of the C region of the Longin domain allowed it to extensively integrate into the endomembrane trafficking machinery in the earliest stages of building the eukaryotic cell.


Assuntos
Evolução Molecular , Proteínas de Transporte Vesicular/química , Adaptação Fisiológica/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Dados de Sequência Molecular , Plantas , Estrutura Terciária de Proteína , Transporte Proteico , Homologia de Sequência de Aminoácidos , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
9.
Nanoscale ; 16(9): 4890-4899, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38323489

RESUMO

Cytoskeletal protein filaments such as actin and microtubules confer mechanical support to cells and facilitate many cellular functions such as motility and division. Recent years have witnessed the development of a variety of molecular scaffolds that mimic such filaments. Indeed, filaments that are programmable and compatible with biological systems may prove useful in studying or substituting such proteins. Here, we explore the use of ssRNA tiles to build and modify filaments in vitro. We engineer a number of functionalities that are crucial to the function of natural proteins filaments into the ssRNA tiles, including the abilities to assemble or disassemble filaments, to tune the filament stiffness, to induce membrane binding, and to bind proteins. This work paves the way for building dynamic cytoskeleton-mimicking systems made out of rationally designed ssRNA tiles that can be transcribed in natural or synthetic cells.


Assuntos
Citoesqueleto , Microtúbulos , Citoesqueleto/metabolismo , Microtúbulos/metabolismo , Actinas/metabolismo , Citoesqueleto de Actina/metabolismo
10.
Nat Nanotechnol ; 19(1): 70-76, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37798563

RESUMO

Membrane abscission, the final cut of the last connection between emerging daughter cells, is an indispensable event in the last stage of cell division and in other cellular processes such as endocytosis, virus release or bacterial sporulation. However, its mechanism remains poorly understood, impeding its application as a cell-division machinery for synthetic cells. Here we use fluorescence microscopy and fluorescence recovery after photobleaching measurements to study the in vitro reconstitution of the bacterial protein dynamin A inside liposomes. Upon external reshaping of the liposomes into dumbbells, dynamin A self-assembles at the membrane neck, resulting in membrane hemi-scission and even full scission. Dynamin A proteins constitute a simple one-component division machinery capable of splitting dumbbell-shaped liposomes, marking an important step towards building a synthetic cell.


Assuntos
Células Artificiais , Lipossomos , Dinaminas/metabolismo , Endocitose , Divisão Celular , Bactérias/metabolismo
11.
J Biol Chem ; 287(7): 4818-25, 2012 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-22139833

RESUMO

Channelrhodopsin-2 (ChR2) is a light-gated cation channel widely used as a biotechnological tool to control membrane depolarization in various cell types and tissues. Although several ChR2 variants with modified properties have been generated, the structural determinants of the protein function are largely unresolved. We used bioinformatic modeling of the ChR2 structure to identify the putative cationic pathway within the channel, which is formed by a system of inner cavities that are uniquely present in this microbial rhodopsin. Site-directed mutagenesis combined with patch clamp analysis in HeLa cells was used to determine key residues involved in ChR2 conductance and selectivity. Among them, Gln-56 is important for ion conductance, whereas Ser-63, Thr-250, and Asn-258 are previously unrecognized residues involved in ion selectivity and photocurrent kinetics. This study widens the current structural information on ChR2 and can assist in the design of new improved variants for specific biological applications.


Assuntos
Modelos Moleculares , Proteínas do Tecido Nervoso/metabolismo , Channelrhodopsins , Biologia Computacional/métodos , Células HeLa , Humanos , Transporte de Íons/fisiologia , Mutação , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Estrutura Terciária de Proteína
12.
Nat Struct Mol Biol ; 30(1): 81-90, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36604498

RESUMO

The endosomal sorting complex required for transport (ESCRT) is a highly conserved protein machinery that drives a divers set of physiological and pathological membrane remodeling processes. However, the structural basis of ESCRT-III polymers stabilizing, constricting and cleaving negatively curved membranes is yet unknown. Here we present cryo-EM structures of membrane-coated CHMP2A-CHMP3 filaments from Homo sapiens of two different diameters at 3.3 and 3.6 Å resolution. The structures reveal helical filaments assembled by CHMP2A-CHMP3 heterodimers in the open ESCRT-III conformation, which generates a partially positive charged membrane interaction surface, positions short N-terminal motifs for membrane interaction and the C-terminal VPS4 target sequence toward the tube interior. Inter-filament interactions are electrostatic, which may facilitate filament sliding upon VPS4-mediated polymer remodeling. Fluorescence microscopy as well as high-speed atomic force microscopy imaging corroborate that VPS4 can constrict and cleave CHMP2A-CHMP3 membrane tubes. We therefore conclude that CHMP2A-CHMP3-VPS4 act as a minimal membrane fission machinery.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Polímeros , Humanos , Complexos Endossomais de Distribuição Requeridos para Transporte/química , Polímeros/metabolismo , Proteínas de Transporte/metabolismo , Transporte Proteico
13.
Med Sci Monit ; 18(6): BR221-8, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22648243

RESUMO

BACKGROUND: Detection and quantification of adenoviruses (AdVs) causing life-threatening complications are important abilities in recognition of infection and management of immunocompromised patients. Due to the rapid increase in the number of known AdV types, most commercial tests for detection and identification of AdVs are outdated. MATERIAL/METHODS: We designed an improved, easier and faster real-time quantitative polymerase chain reaction (RQ-PCR) method for detection and quantification of 54 types of human AdVs. A wide validation effort was undertaken to ensure confidence in highly sensitive and specific detection of AdVs in compromised patients. The validation process included evaluation of the method's suitability and reliability for use in routine diagnostics. RESULTS: Due to high sensitivity (9.2×10² copies/ml) and broad dynamic range (7 log) we are able to detect specific viral DNA in large amounts of cell-free body fluids. The new assay is characterized by high precision and low variation within and between individual virus tests (CV=0.036%, CV=1.29%), low bias error (4%) and no cross-reactivity with other pathogens. CONCLUSIONS: The implementation of this new assay in clinical and laboratory practice provides a rapid, reliable and less laborious method for detection and monitoring of AdV replication in immunocompromised patients. Moreover, it offers the ability to distinguish between active and latent infection and assess treatment efficiency.


Assuntos
Adenovírus Humanos/genética , Adenovírus Humanos/isolamento & purificação , Bioensaio/métodos , Reação em Cadeia da Polimerase em Tempo Real/métodos , Adolescente , Adulto , Criança , Pré-Escolar , Primers do DNA/metabolismo , DNA Viral/análise , DNA Viral/genética , Feminino , Genótipo , Humanos , Lactente , Masculino , Valores de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Adulto Jovem
14.
FEBS Lett ; 596(7): 958-969, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35238034

RESUMO

The Cdv proteins constitute the cell division system of the Crenarchaea, a machinery closely related to the ESCRT system of eukaryotes. Using a combination of TEM imaging and biochemical assays, we here present an in vitro study of Metallosphaera sedula CdvB1, the Cdv protein that is believed to play a major role in the constricting ring that drives cell division in the Crenarchaea. We show that CdvB1 self-assembles into filaments that are depolymerized by the Vps4-homolog ATPase CdvC. Furthermore, we find that CdvB1 binds to negatively charged lipid membranes and can be detached from the membrane by the action of CdvC. Our findings provide novel insight into one of the main components of the archaeal cell division machinery.


Assuntos
Archaea , Proteínas Arqueais , Archaea/metabolismo , Proteínas Arqueais/metabolismo , Divisão Celular , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Polímeros
15.
ACS Nano ; 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36441529

RESUMO

Shape defines the structure and function of cellular membranes. In cell division, the cell membrane deforms into a "dumbbell" shape, while organelles such as the autophagosome exhibit "stomatocyte" shapes. Bottom-up in vitro reconstitution of protein machineries that stabilize or resolve the membrane necks in such deformed liposome structures is of considerable interest to characterize their function. Here we develop a DNA-nanotechnology-based approach that we call the synthetic membrane shaper (SMS), where cholesterol-linked DNA structures attach to the liposome membrane to reproducibly generate high yields of stomatocytes and dumbbells. In silico simulations confirm the shape-stabilizing role of the SMS. We show that the SMS is fully compatible with protein reconstitution by assembling bacterial divisome proteins (DynaminA, FtsZ:ZipA) at the catenoidal neck of these membrane structures. The SMS approach provides a general tool for studying protein binding to complex membrane geometries that will greatly benefit synthetic cell research.

16.
BMC Mol Biol ; 12: 26, 2011 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-21609427

RESUMO

BACKGROUND: The control of intracellular vesicle trafficking is an ideal target to weigh the role of alternative splicing in shaping genomes to make cells. Alternative splicing has been reported for several Soluble N-ethylmaleimide-sensitive factor Attachment protein REceptors of the vesicle (v-SNAREs) or of the target membrane (t-SNARES), which are crucial to intracellular membrane fusion and protein and lipid traffic in Eukaryotes. However, splicing has not yet been investigated in Longins, i.e. the most widespread v-SNAREs. Longins are essential in Eukaryotes and prototyped by VAMP7, Sec22b and Ykt6, sharing a conserved N-terminal Longin domain which regulates membrane fusion and subcellular targeting. Human VAMP7/TI-VAMP, encoded by gene SYBL1, is involved in multiple cell pathways, including control of neurite outgrowth. RESULTS: Alternative splicing of SYBL1 by exon skipping events results in the production of a number of VAMP7 isoforms. In-frame or frameshift coding sequence modifications modulate domain architecture of VAMP7 isoforms, which can lack whole domains or domain fragments and show variant or extra domains. Intriguingly, two main types of VAMP7 isoforms either share the inhibitory Longin domain and lack the fusion-promoting SNARE motif, or vice versa. Expression analysis in different tissues and cell lines, quantitative real time RT-PCR and confocal microscopy analysis of fluorescent protein-tagged isoforms demonstrate that VAMP7 variants have different tissue specificities and subcellular localizations. Moreover, design and use of isoform-specific antibodies provided preliminary evidence for the existence of splice variants at the protein level. CONCLUSIONS: Previous evidence on VAMP7 suggests inhibitory functions for the Longin domain and fusion/growth promoting activity for the Δ-longin molecule. Thus, non-SNARE isoforms with Longin domain and non-longin SNARE isoforms might have somehow opposite regulatory functions. When considering splice variants as "natural mutants", evidence on modulation of subcellular localization by variation in domain combination can shed further light on targeting determinants. Although further work will be needed to characterize identified variants, our data might open the route to unravel novel molecular partners and mechanisms, accounting for the multiplicity of functions carried out by the different members of the Longin proteins family.


Assuntos
Processamento Alternativo , Proteínas R-SNARE/metabolismo , Proteínas SNARE/metabolismo , Linhagem Celular , Éxons , Humanos , Isoformas de Proteínas/análise , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Proteínas R-SNARE/análise , Proteínas R-SNARE/genética
17.
ACS Nano ; 15(8): 12768-12779, 2021 08 24.
Artigo em Inglês | MEDLINE | ID: mdl-34170119

RESUMO

Molecular traffic across lipid membranes is a vital process in cell biology that involves specialized biological pores with a great variety of pore diameters, from fractions of a nanometer to >30 nm. Creating artificial membrane pores covering similar size and complexity will aid the understanding of transmembrane molecular transport in cells, while artificial pores are also a necessary ingredient for synthetic cells. Here, we report the construction of DNA origami nanopores that have an inner diameter as large as 30 nm. We developed methods to successfully insert these ultrawide pores into the lipid membrane of giant unilamellar vesicles (GUVs) by administering the pores concomitantly with vesicle formation in an inverted-emulsion cDICE technique. The reconstituted pores permit the transmembrane diffusion of large macromolecules, such as folded proteins, which demonstrates the formation of large membrane-spanning open pores. The pores are size selective, as dextran molecules with a diameter up to 28 nm can traverse the pores, whereas larger dextran molecules are blocked. By FRAP measurements and modeling of the GFP influx rate, we find that up to hundreds of pores can be functionally reconstituted into a single GUV. Our technique bears great potential for applications across different fields from biomimetics, to synthetic biology, to drug delivery.


Assuntos
Dextranos , Lipossomos , Dextranos/metabolismo , Lipossomas Unilamelares , Transporte Biológico , DNA/metabolismo , Lipídeos
18.
ACS Synth Biol ; 10(7): 1690-1702, 2021 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-34185516

RESUMO

Giant unilamellar vesicles (GUVs) are often used to mimic biological membranes in reconstitution experiments. They are also widely used in research on synthetic cells, as they provide a mechanically responsive reaction compartment that allows for controlled exchange of reactants with the environment. However, while many methods exist to encapsulate functional biomolecules in GUVs, there is no one-size-fits-all solution and reliable GUV fabrication still remains a major experimental hurdle in the field. Here, we show that defect-free GUVs containing complex biochemical systems can be generated by optimizing a double-emulsion method for GUV formation called continuous droplet interface crossing encapsulation (cDICE). By tightly controlling environmental conditions and tuning the lipid-in-oil dispersion, we show that it is possible to significantly improve the reproducibility of high-quality GUV formation as well as the encapsulation efficiency. We demonstrate efficient encapsulation for a range of biological systems including a minimal actin cytoskeleton, membrane-anchored DNA nanostructures, and a functional PURE (protein synthesis using recombinant elements) system. Our optimized cDICE method displays promising potential to become a standard method in biophysics and bottom-up synthetic biology.


Assuntos
Biologia Sintética/métodos , Lipossomas Unilamelares/metabolismo , Citoesqueleto de Actina/metabolismo , DNA/metabolismo , Emulsões , Reprodutibilidade dos Testes
19.
Nat Commun ; 12(1): 4531, 2021 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-34312383

RESUMO

Recent developments in synthetic biology may bring the bottom-up generation of a synthetic cell within reach. A key feature of a living synthetic cell is a functional cell cycle, in which DNA replication and segregation as well as cell growth and division are well integrated. Here, we describe different approaches to recreate these processes in a synthetic cell, based on natural systems and/or synthetic alternatives. Although some individual machineries have recently been established, their integration and control in a synthetic cell cycle remain to be addressed. In this Perspective, we discuss potential paths towards an integrated synthetic cell cycle.


Assuntos
Células Artificiais , Mimetismo Biológico/genética , Ciclo Celular/genética , Replicação do DNA/genética , Modelos Genéticos , Biologia Sintética/métodos , Bacteriófagos/genética , Escherichia coli/genética , Biossíntese de Proteínas/genética , Biologia Sintética/tendências , Transcrição Gênica/genética
20.
J Cell Biol ; 219(6)2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32311005

RESUMO

Microtubule-associated serine/threonine-protein kinase-like (MASTL) is a mitosis-accelerating kinase with emerging roles in cancer progression. However, possible cell cycle-independent mechanisms behind its oncogenicity remain ambiguous. Here, we identify MASTL as an activator of cell contractility and MRTF-A/SRF (myocardin-related transcription factor A/serum response factor) signaling. Depletion of MASTL increased cell spreading while reducing contractile actin stress fibers in normal and breast cancer cells and strongly impairing breast cancer cell motility and invasion. Transcriptome and proteome profiling revealed MASTL-regulated genes implicated in cell movement and actomyosin contraction, including Rho guanine nucleotide exchange factor 2 (GEF-H1, ARHGEF2) and MRTF-A target genes tropomyosin 4.2 (TPM4), vinculin (VCL), and nonmuscle myosin IIB (NM-2B, MYH10). Mechanistically, MASTL associated with MRTF-A and increased its nuclear retention and transcriptional activity. Importantly, MASTL kinase activity was not required for regulation of cell spreading or MRTF-A/SRF transcriptional activity. Taken together, we present a previously unknown kinase-independent role for MASTL as a regulator of cell adhesion, contractility, and MRTF-A/SRF activity.


Assuntos
Citoesqueleto de Actina/enzimologia , Adesão Celular/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Transdução de Sinais/genética , Transativadores/metabolismo , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Ciclo Celular/genética , Linhagem Celular Tumoral , Movimento Celular/genética , Núcleo Celular/metabolismo , Perfilação da Expressão Gênica , Humanos , Integrinas/genética , Integrinas/metabolismo , Proteínas Associadas aos Microtúbulos/deficiência , Proteínas Associadas aos Microtúbulos/genética , Miosina não Muscular Tipo IIB/genética , Miosina não Muscular Tipo IIB/metabolismo , Fosforilação , Ligação Proteica , Proteínas Serina-Treonina Quinases/deficiência , Proteínas Serina-Treonina Quinases/genética , Proteoma/metabolismo , RNA Interferente Pequeno , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fibras de Estresse/genética , Fibras de Estresse/metabolismo , Transativadores/genética , Transcriptoma/genética , Tropomiosina/genética , Tropomiosina/metabolismo , Vinculina/genética , Vinculina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA