Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell Mol Life Sci ; 73(2): 291-303, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26499980

RESUMO

The morphogenic factor sonic hedgehog (Shh) actively orchestrates many aspects of cerebellar development and maturation. During embryogenesis, Shh signaling is active in the ventricular germinal zone (VZ) and represents an essential signal for proliferation of VZ-derived progenitors. Later, Shh secreted by Purkinje cells sustains the amplification of postnatal neurogenic niches: the external granular layer and the prospective white matter, where excitatory granule cells and inhibitory interneurons are produced, respectively. Moreover, Shh signaling affects Bergmann glial differentiation and promotes cerebellar foliation during development. Here we review the most relevant functions of Shh during cerebellar ontogenesis, underlying its role in physiological and pathological conditions.


Assuntos
Cerebelo/crescimento & desenvolvimento , Proteínas Hedgehog/metabolismo , Transdução de Sinais , Animais , Neoplasias Cerebelares/metabolismo , Neoplasias Cerebelares/patologia , Cerebelo/citologia , Cerebelo/metabolismo , Cerebelo/patologia , Proteínas Hedgehog/análise , Humanos , Interneurônios/metabolismo , Interneurônios/patologia , Meduloblastoma/metabolismo , Meduloblastoma/patologia , Células de Purkinje/metabolismo , Células de Purkinje/patologia
2.
Development ; 138(16): 3463-72, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21771816

RESUMO

The progenitors of cerebellar GABAergic interneurons proliferate up to postnatal development in the prospective white matter, where they give rise to different neuronal subtypes, in defined quantities and according to precise spatiotemporal sequences. To investigate the mechanisms that regulate the specification of distinct interneuron phenotypes, we examined mice lacking the G1 phase-active cyclin D2. It has been reported that these mice show severe reduction of stellate cells, the last generated interneuron subtype. We found that loss of cyclin D2 actually impairs the whole process of interneuron genesis. In the mutant cerebella, progenitors of the prospective white matter show reduced proliferation rates and enhanced tendency to leave the cycle, whereas young postmitotic interneurons undergo severe delay of their maturation and migration. As a consequence, the progenitor pool is precociously exhausted and the number of interneurons is significantly reduced, although molecular layer interneurons are more affected than those of granular layer or deep nuclei. The characteristic inside-out sequence of interneuron placement in the cortical layers is also reversed, so that later born cells occupy deeper positions than earlier generated ones. Transplantation experiments show that the abnormalities of cyclin D2(-/-) interneurons are largely caused by cell-autonomous mechanisms. Therefore, cyclin D2 is not required for the specification of particular interneuron subtypes. Loss of this protein, however, disrupts regulatory mechanisms of cell cycle dynamics that are required to determine the numbers of interneurons of different types and impairs their rhythm of maturation and integration in the cerebellar circuitry.


Assuntos
Encéfalo/metabolismo , Ciclo Celular , Ciclina D2/metabolismo , Interneurônios/citologia , Interneurônios/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Encéfalo/embriologia , Encéfalo/crescimento & desenvolvimento , Movimento Celular , Ciclina D2/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
3.
Nat Biotechnol ; 20(5): 488-95, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11981563

RESUMO

Hepatocyte growth factor (HGF) and macrophage-stimulating protein (MSP) have an intrinsic dual nature: they are trophic cytokines preventing apoptosis on one side and scatter factors promoting invasion on the other. For therapeutic use, their anti-apoptotic activity must be separated from their pro-invasive activity. To this end, we engineered chimeric factors containing selected functional domains of HGF and/or MSP in different combinations, and tested their biological activity. Here we present a chimeric cytokine derived from the alpha-chains of HGF and MSP, named Metron factor 1 for its ability to concomitantly activate the HGF receptor (Met) and the MSP receptor (Ron). We provide evidence that Metron factor 1 prevents apoptosis and stimulates cell proliferation at nanomolar concentrations, but is devoid of any pro-invasive activity. In an in vivo murine model of drug-induced nephrotoxicity, intravenous injection of recombinant Metron factor 1 prevented renal damage and preserved tubular integrity.


Assuntos
Citocinas/metabolismo , Substâncias de Crescimento/metabolismo , Fator de Crescimento de Hepatócito/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Animais , Apoptose , Western Blotting , Divisão Celular , Linhagem Celular , Reagentes de Ligações Cruzadas/farmacologia , Dimerização , Relação Dose-Resposta a Droga , Células Epiteliais/patologia , Humanos , Rim/metabolismo , Ligantes , Camundongos , Modelos Biológicos , Ligação Proteica , Receptores de Fatores de Crescimento/metabolismo , Insuficiência Renal/metabolismo , Transdução de Sinais , Fatores de Tempo
4.
Neuropsychopharmacology ; 41(6): 1457-66, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26538449

RESUMO

Autism spectrum disorders (ASDs) are neurodevelopmental disorders characterized by impaired social interaction, isolated areas of interest, and insistence on sameness. Mutations in Phosphatase and tensin homolog missing on chromosome 10 (PTEN) have been reported in individuals with ASDs. Recent evidence highlights a crucial role of the cerebellum in the etiopathogenesis of ASDs. In the present study we analyzed the specific contribution of cerebellar Purkinje cell (PC) PTEN loss to these disorders. Using the Cre-loxP recombination system, we generated conditional knockout mice in which PTEN inactivation was induced specifically in PCs. We investigated PC morphology and physiology as well as sociability, repetitive behavior, motor learning, and cognitive inflexibility of adult PC PTEN-mutant mice. Loss of PTEN in PCs results in autistic-like traits, including impaired sociability, repetitive behavior and deficits in motor learning. Mutant PCs appear hypertrophic and show structural abnormalities in dendrites and axons, decreased excitability, disrupted parallel fiber and climbing fiber synapses and late-onset cell death. Our results unveil new roles of PTEN in PC function and provide the first evidence of a link between the loss of PTEN in PCs and the genesis of ASD-like traits.


Assuntos
Transtorno Autístico/fisiopatologia , Cerebelo/fisiopatologia , PTEN Fosfo-Hidrolase/fisiologia , Células de Purkinje/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Comportamento Social , Aprendizagem Espacial/fisiologia , Comportamento Estereotipado/fisiologia
5.
PLoS One ; 4(8): e6848, 2009 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-19718257

RESUMO

BACKGROUND: During development, neurons modify their axon growth mode switching from an elongating phase, in which the main axon stem reaches the target territory through growth cone-driven extension, to an arborising phase, when the terminal arbour is formed to establish synaptic connections. To investigate the relative contribution of cell-autonomous factors and environmental signals in the control of these distinct axon growth patterns, we examined the neuritogenesis of Purkinje neurons in cerebellar cultures prepared at elongating (embryonic day 17) or arborising (postnatal day zero) stages of Purkinje axon maturation. METHODOLOGY/PRINCIPAL FINDINGS: When placed in vitro, Purkinje cells of both ages undergo an initial phase of neurite elongation followed by the development of terminal ramifications. Nevertheless, elongation of the main axon stem prevails in embryonic Purkinje axons, and many of these neurons are totally unable to form terminal branches. On the contrary, all postnatal neurites switch to arbour growth within a few days in culture and spread extensive terminal trees. Regardless of their elongating or arborising pattern, defined growth features (e.g. growth rate and tree extension) of embryonic Purkinje axons remain distinct from those of postnatal neurites. Thus, Purkinje neurons of different ages are endowed with intrinsic stage-specific competence for neuritic growth. Such competence, however, can be modified by environmental cues. Indeed, while exposure to the postnatal environment stimulates the growth of embryonic axons without modifying their phenotype, contact-mediated signals derived from granule cells specifically induce arborising growth and modulate the dynamics of neuritic elongation. CONCLUSIONS/SIGNIFICANCE: Cultured Purkinje cells recapitulate an intrinsically coded neuritogenic program, involving initial navigation of the axon towards the target field and subsequent expansion of the terminal arborisation. The execution of this program is regulated by environmental signals that modify the growth competence of Purkinje cells, so to adapt their endogenous properties to the different phases of neuritic morphogenesis.


Assuntos
Axônios , Neuritos , Células de Purkinje/citologia , Animais , Morfogênese , Ratos , Ratos Wistar
6.
Mol Cell Neurosci ; 33(2): 170-9, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-16949837

RESUMO

In cerebellar Purkinje cells, Kv3 potassium channels are indispensable for firing at high frequencies. In Purkinje cells from young mice (P4-P7), Kv3 currents, recorded in whole-cell in slices, activated at -30 mV, with rapid activation and deactivation kinetics, and they were partially blocked by blood depressing substance-I (BDS-I, 1 microM). At positive potentials, Kv3 currents were slowly but completely inactivating, while the recovery from inactivation was about eightfold slower, suggesting that a previous firing activity or a small change of the resting potential could in principle accumulate inactivated Kv3 channels, thereby finely tuning Kv3 current availability for subsequent action potentials. Single-cell RT-PCR analysis showed the expression by all Purkinje cells (n=10 for each subunit) of Kv3.1, Kv3.3 and Kv3.4 mRNA, while Kv3.2 was not expressed. These results add to the framework for interpreting the physiological function and the molecular determinants of Kv3 currents in cerebellar Purkinje cells.


Assuntos
Células de Purkinje/fisiologia , Canais de Potássio Shaw/genética , Canais de Potássio Shaw/fisiologia , Animais , Cerebelo/citologia , Cerebelo/crescimento & desenvolvimento , Cerebelo/fisiologia , Venenos de Cnidários/farmacologia , Feminino , Expressão Gênica , Técnicas In Vitro , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos , Técnicas de Patch-Clamp , RNA Mensageiro
7.
Int J Cancer ; 103(4): 466-74, 2003 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-12478661

RESUMO

Angiogenic factors produced by tumor cells are essential for tumor growth and metastasis. In our study, the expression of Angiopoietin-1 (ANG1) and Angiopoietin-2 (ANG2) mRNA in archival human breast cancer tumor samples and in 6 breast cancer cell lines was investigated. Total RNA from biopsies of 38 breast cancer patients was extracted and ANG1 and ANG2 mRNA expression was measured by means of quantitative real-time RT-PCR (Taqman). Matching data with available clinicopathologic and biochemical data revealed a significant association between ANG2 expression and axillary lymph node invasion. Univariate and multivariate survival analysis, by means of Kaplan-Meier method and Cox's proportional hazards model, showed significant and independent association between ANG2 mRNA level and both disease-free (p < 0.0001) and overall survival (p < 0.0003). An important fact is that, notwithstanding the small number of cases examined, this association was confirmed also in the group of lymph node-negative patients (DFS, p < 0.003; OS, p < 0.020). Immunohistochemical analysis demonstrated that Ang2 is expressed by both tumor cells and endothelial elements. Expression in tumor cells was confirmed by studying a panel of human breast carcinoma cell lines in culture by RT-PCR. In ZR75.1 and T47D cells, expression of ANG2 mRNA was increased up to 10-fold by treatment with estrogen within 24 hr. Although preliminary, these data suggest a possible role of ANG2 as a prognostic factor for primary breast cancer.


Assuntos
Indutores da Angiogênese/biossíntese , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Angiopoietina-1 , Angiopoietina-2 , Progressão da Doença , Intervalo Livre de Doença , Fatores de Crescimento Endotelial/biossíntese , Estrogênios/metabolismo , Estrogênios/farmacologia , Feminino , Humanos , Imuno-Histoquímica , Hibridização In Situ , Metástase Linfática , Glicoproteínas de Membrana/biossíntese , Análise Multivariada , Prognóstico , Modelos de Riscos Proporcionais , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Células Tumorais Cultivadas , Fator C de Crescimento do Endotélio Vascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA