Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39149287

RESUMO

The purpose of these studies is to investigate how Sphingosine-1-phosphate (S1P) signaling regulates glial phenotype, dedifferentiation of Müller glia (MG), reprogramming into proliferating MG-derived progenitor cells (MGPCs), and neuronal differentiation of the progeny of MGPCs. We found that S1P-related genes are highly expressed by retinal neurons and glia, and levels of expression were dynamically regulated following retinal damage. S1PR1 is highly expressed by resting MG and is rapidly downregulated following acute retinal damage. Drug treatments that activate S1PR1 or increase levels of S1P suppressed the formation of MGPCs, whereas treatments that inhibit S1PR1 or decreased levels of S1P stimulated the formation of MGPCs. Inhibition of S1PR1 or SPHK1 significantly enhanced the neuronal differentiation of the progeny of MGPCs. Further, ablation of microglia from the retina, wherein the formation of MGPCs in damaged retinas is impaired, has a significant impact upon expression patterns of S1P-related genes in MG. Inhibition of S1PR1 and SPHK1 partially rescued the formation of MGPCs in damaged retinas missing microglia. Finally, we show that TGFß/Smad3 signaling in the resting retina maintains S1PR1 expression in MG. We conclude that the S1P signaling is dynamically regulated in MG and MGPCs and activation of S1P signaling depends, in part, on signals produced by reactive microglia.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA