RESUMO
The innate immune system can display heterologous memory-like responses termed trained immunity after stimulation by certain vaccinations or infections. In this randomized, placebo-controlled trial, we investigated the modulation of Bacille Calmette-Guérin (BCG)-induced trained immunity by BCG revaccination or high-dose BCG administration, in comparison to a standard dose. We show that monocytes from all groups of BCG-vaccinated individuals exerted increased TNFα production after ex-vivo stimulation with various unrelated pathogens. Similarly, we observed increased amounts of T-cell-derived IFNγ after M. tuberculosis exposure, regardless of the BCG intervention. NK cell cytokine production, especially after heterologous stimulation with the fungal pathogen Candida albicans, was predominantly boosted after high dose BCG administration. Cytokine production capacity before vaccination was inversely correlated with trained immunity. While the induction of a trained immunity profile is largely dose- or frequency independent, baseline cytokine production capacity is associated with the magnitude of the innate immune memory response after BCG vaccination.
Assuntos
Vacina BCG , Mycobacterium tuberculosis , Humanos , Imunização Secundária , Imunidade Treinada , Imunidade Adaptativa , Vacinação , Citocinas , Imunidade InataRESUMO
Both innate errors of immunity, such as familial Mediterranean fever (FMF) and chronic granulomatous disease (CGD), and the common inflammatory disease gout are characterized by episodes of sterile inflammatory attacks in the absence of an infection. While these disorders encompass distinct pathologies due to differentially affected metabolic pathways and inflammasome activation mechanisms, their common features are the excessive production of interleukin (IL)-1ß and innate immune cell hyperreactivity. On the other hand, the role of T cells and innate-like lymphocytes such as gamma delta (γδ) T cells in these pathologies is ill-defined. In order to widen our understanding of T cell involvement in CGD, FMF and gout pathology, we developed multicolour immunophenotyping panels for flow cytometry to characterize γδ T cells as well as CD4 and CD8 T cell populations in terms of their cytokine production, activation status, memory or naive phenotypes, exhaustion status, homing receptor expression, and cytotoxic activity. Our study is the first deep immunophenotyping analysis of T cell populations in CGD, FMF, and gout patients. We found that CGD affects the frequencies and activation status of T cells, while gout impairs the cytokine production capacity of Vδ2 T cells. FMF was characterized by decreased percentages of regulatory T cells in circulation and attenuated IFN-γ production capacity by Vδ2 T cells. Autoinflammatory syndromes and congenital defects of phagocyte differentially affect T cell compartments. Future studies are warranted to assess whether these phenotypical changes are relevant for disease pathology.
Assuntos
Febre Familiar do Mediterrâneo , Gota , Doença Granulomatosa Crônica , Humanos , Doença Granulomatosa Crônica/diagnóstico , Linfócitos T CD8-Positivos , CitocinasRESUMO
Non-specific protective effects of certain vaccines have been reported, and long-term boosting of innate immunity, termed trained immunity, has been proposed as one of the mechanisms mediating these effects. Several epidemiological studies suggested cross-protection between influenza vaccination and COVID-19. In a large academic Dutch hospital, we found that SARS-CoV-2 infection was less common among employees who had received a previous influenza vaccination: relative risk reductions of 37% and 49% were observed following influenza vaccination during the first and second COVID-19 waves, respectively. The quadrivalent inactivated influenza vaccine induced a trained immunity program that boosted innate immune responses against various viral stimuli and fine-tuned the anti-SARS-CoV-2 response, which may result in better protection against COVID-19. Influenza vaccination led to transcriptional reprogramming of monocytes and reduced systemic inflammation. These epidemiological and immunological data argue for potential benefits of influenza vaccination against COVID-19, and future randomized trials are warranted to test this possibility.
Assuntos
COVID-19/imunologia , Proteção Cruzada/fisiologia , Imunidade Inata/fisiologia , Vacinas contra Influenza/administração & dosagem , COVID-19/epidemiologia , COVID-19/prevenção & controle , Citocinas/imunologia , Citocinas/metabolismo , Regulação para Baixo , Imidazóis/imunologia , Incidência , Vacinas contra Influenza/imunologia , Países Baixos/epidemiologia , Recursos Humanos em Hospital , Poli I-C/imunologia , Proteômica , Fatores de Risco , Análise de Sequência de RNARESUMO
Bacillus Calmette-Guérin (BCG) vaccination induces memory characteristics in innate immune cells and their progenitors, a process called trained immunity mediated by epigenetic and metabolic reprogramming. Cholesterol synthesis plays an amplifying role in trained immunity through mevalonate release. Nitrogen-containing bisphosphonates (N-BPs), such as alendronate, can inhibit cholesterol synthesis. We explored their effects on trained immunity induced by BCG in a placebo-controlled clinical study (NL74082.091.20) in young, healthy individuals. Participants receiving single-dose oral alendronate on the day of BCG vaccination had more neutrophils and plasma cells one month after treatment. Alendronate led to reduced proinflammatory cytokine production by PBMCs stimulated with heterologous bacterial and viral stimuli one month later. Furthermore, the addition of alendronate transcriptionally suppressed multiple immune response pathways in PBMCs upon stimulation. Our findings indicate that N-BPs modulate the long-lasting effects of BCG vaccination on the cytokine production capacity of innate immune cells.
Assuntos
Alendronato , Vacina BCG , Citocinas , Leucócitos Mononucleares , Vacinação , Humanos , Vacina BCG/imunologia , Vacina BCG/administração & dosagem , Citocinas/metabolismo , Alendronato/farmacologia , Masculino , Adulto , Feminino , Adulto Jovem , Leucócitos Mononucleares/imunologia , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Voluntários Saudáveis , Memória Imunológica/efeitos dos fármacosRESUMO
Familial Mediterranean fever (FMF) is a periodic fever syndrome caused by variation in MEFV. FMF is known for IL-1ß dysregulation, but the innate immune landscape of this disease has not been comprehensively described. Therefore, we studied circulating inflammatory proteins, and the function of monocytes and (albeit less extensively) neutrophils in treated FMF patients in remission. We found that monocyte IL-1ß and IL-6 production was enhanced upon stimulation, in concordance with alterations in the plasma inflammatory proteome. We did not observe changes in neutrophil functional assays. Subtle differences in chromatin accessibility and transcriptomics in our small patient cohort further argued for monocyte dysregulation. Together, these observations suggest that the MEFV-mutation-mediated primary immune dysregulation in monocytes leads to chronic inflammation that is subsequently associated with counterregulatory epigenetic/transcriptional changes reminiscent of tolerance. These data increase our understanding of the innate immune changes in FMF, aiding future management of chronic inflammation in these patients.
RESUMO
The Bacille Calmette-Guerin (BCG) vaccine is a well-established inducer of innate immune memory (also termed trained immunity), causing increased cytokine production upon heterologous secondary stimulation. Innate immune responses are known to be influenced by season, but whether seasons impact induction of trained immunity is not known. To explore the influence of season on innate immune memory induced by the BCG vaccine, we vaccinated healthy volunteers with BCG either during winter or spring. Three months later, we measured the ex vivo cytokine responses against heterologous stimuli, analyzed gene expressions and epigenetic signatures of the immune cells, and compared these with the baseline before vaccination. BCG vaccination during winter induced a stronger increase in the production of pro-inflammatory cytokines by peripheral blood mononuclear cells (PBMCs) upon stimulation with different bacterial and fungal stimuli, compared to BCG vaccination in spring. In contrast, winter BCG vaccination resulted in lower IFNγ release in PBMCs compared to spring BCG vaccination. Furthermore, NK cells of the winter-vaccinated people had a greater pro-inflammatory cytokine and IFNγ production capacity upon heterologous stimulation. BCG had only minor effects on the transcriptome of monocytes 3 months later. In contrast, we identified season-dependent epigenetic changes in monocytes and NK cells induced by vaccination, partly explaining the higher immune cell reactivity in the winter BCG vaccination group. These results suggest that BCG vaccination during winter is more prone to induce a robust trained immunity response by activating and reprogramming the immune cells, especially NK cells. (Dutch clinical trial registry no. NL58219.091.16).
Assuntos
Vacina BCG , Citocinas , Imunidade Inata , Memória Imunológica , Leucócitos Mononucleares , Estações do Ano , Humanos , Vacina BCG/imunologia , Vacina BCG/administração & dosagem , Adulto , Masculino , Citocinas/imunologia , Citocinas/metabolismo , Leucócitos Mononucleares/imunologia , Feminino , Adulto Jovem , Células Matadoras Naturais/imunologia , Vacinação , Voluntários Saudáveis , Interferon gama/imunologia , Interferon gama/metabolismo , Imunidade TreinadaRESUMO
SARS-CoV-2 infections elicit antibodies against the viral spike (S) and nucleocapsid (N) proteins; COVID-19 vaccines against the S-protein only. The BCG-Corona trial, initiated in March 2020 in SARS-CoV-2-naïve Dutch healthcare workers, captured several epidemic peaks and the introduction of COVID-19 vaccines during the one-year follow-up. We assessed determinants of systemic anti-S1 and anti-N immunoglobulin type G (IgG) responses using trial data. Participants were randomised to BCG or placebo vaccination, reported daily symptoms, SARS-CoV-2 test results, and COVID-19 vaccinations, and donated blood for SARS-CoV-2 serology at two time points. In the 970 participants, anti-S1 geometric mean antibody concentrations (GMCs) were much higher than anti-N GMCs. Anti-S1 GMCs significantly increased with increasing number of immune events (SARS-CoV-2 infection or COVID-19 vaccination): 104.7 international units (IU)/mL, 955.0 IU/mL, and 2290.9 IU/mL for one, two, and three immune events, respectively (p < 0.001). In adjusted multivariable linear regression models, anti-S1 and anti-N log10 concentrations were significantly associated with infection severity, and anti-S1 log10 concentration with COVID-19 vaccine type/dose. In univariable models, anti-N log10 concentration was also significantly associated with acute infection duration, and severity and duration of individual symptoms. Antibody concentrations were not associated with long COVID or long-term loss of smell/taste.
RESUMO
The measles, mumps, and rubella (MMR) vaccine protects against all-cause mortality in children, but the immunological mechanisms mediating these effects are poorly known. We systematically investigated whether MMR can induce long-term functional changes in innate immune cells, a process termed trained immunity, that could at least partially mediate this heterologous protection. In a randomized, placebo-controlled trial, 39 healthy adults received either the MMR vaccine or a placebo. Using single-cell RNA-Seq, we found that MMR caused transcriptomic changes in CD14+ monocytes and NK cells, but most profoundly in γδ T cells. Monocyte function was not altered by MMR vaccination. In contrast, the function of γδ T cells was markedly enhanced by MMR vaccination, with higher production of TNF and IFN-γ, as well as upregulation of cellular metabolic pathways. In conclusion, we describe a trained immunity program characterized by modulation of γδ T cell function induced by MMR vaccination.
Assuntos
Caxumba , Rubéola (Sarampo Alemão) , Criança , Adulto , Humanos , Lactente , Caxumba/prevenção & controle , Vacina contra Sarampo-Caxumba-Rubéola , Rubéola (Sarampo Alemão)/prevenção & controle , Reprogramação Metabólica , Imunidade Treinada , Vacinação , Anticorpos AntiviraisRESUMO
BACKGROUND: Immune checkpoint inhibitors have revolutionized therapy of advanced and metastatic cancers. However, a significant proportion of patients do not respond to immune checkpoint inhibitors or develop resistance. Therefore, novel therapies or combinations of therapies that may act synergistically are needed. It has been suggested that induction of trained immunity may increase the response to immune checkpoint inhibitor therapy, through reprogramming myeloid cells toward an antitumor phenotype. On the other hand, activation of the immune system also carries the risk of potentially sustaining tumorgenicity and increasing immune- related toxicity. CASE PRESENTATION: We report the case of a 37-year-old Dutch male suffering from gastric neuroendocrine carcinoma with liver metastases and high risk for an unfavorable outcome, who was treated with a combination of programmed cell death protein 1 inhibitor nivolumab and the trained immunity-inducer Bacillus Calmette-Guérin vaccine as a salvage therapy. Three doses of BCG vaccine were administered at 3-month intervals, in conjunction with the immune checkpoint inhibitor regimen. At a certain point, radiation therapy was added to the treatment regimen. During the combination of these therapies, the patient developed immune-mediated colitis, which necessitated discontinuation of all treatments. Bacillus Calmette-Guérin vaccination induced a trained immune response with elevated monocyte-derived interleukin-6 and interleukin-1ß production capacity. From the first vaccination with Bacillus Calmette-Guérin until 3 months after the last vaccination with Bacillus Calmette-Guérin, the patient displayed only mild progression of the primary tumor and no progression of the metastases. CONCLUSION: In this study, we show the feasibility to combine checkpoint inhibitor therapy with inducers of trained immunity in a patient with an aggressive neuroendocrine tumor. Autoimmune side effects are common under programmed cell death protein 1 inhibitor therapy, which was considered the most likely cause of colitis, although an additive effect of Bacillus Calmette-Guérin vaccination or radiotherapy cannot be excluded. The patient displayed only mild progression during the combination therapy, but larger studies are warranted to fully explore the potential benefit of trained immunity inducers as an adjuvant to immune checkpoint inhibitor therapy.
Assuntos
Carcinoma Neuroendócrino , Colite , Tumores Neuroendócrinos , Masculino , Humanos , Vacina BCG/efeitos adversos , Inibidores de Checkpoint Imunológico/uso terapêutico , Carcinoma Neuroendócrino/tratamento farmacológicoRESUMO
The proper functioning of the immune system depends on an appropriate balance between pro-inflammation and anti-inflammation. When the balance is disrupted and the system is excessively biased towards inflammation, immune responses cannot return within the normal range, which favors the onset of diseases of autoimmune or inflammatory nature. In this scenario, it is fundamental to find new compounds that can help restore this balance and contribute to the normal functioning of the immune system in humans. Here, we show the properties of a fungal compound with a strong safety profile in humans, AM3, as an immunomodulatory molecule to decrease excessive cytokine production in human cells. Our results present that AM3 treatment of human peripheral blood mononuclear cells and monocytes decreased their pro-inflammatory cytokine secretion following the challenge with bacterial lipopolysaccharide. Additionally, AM3 skewed the differentiation profile of human monocytes to macrophages towards a non-inflammatory phenotype without inducing tolerance, meaning these cells kept their capacity to respond to different stimuli. These effects were similar in young and elderly individuals. Thus, the fungal compound, AM3 may help reduce excessive immune activation in inflammatory conditions and keep the immune responses within a normal homeostatic range, regardless of the age of the individual.
Assuntos
Leucócitos Mononucleares , Monócitos , Humanos , Idoso , Inflamação , Diferenciação Celular , CitocinasRESUMO
During the coronavirus disease 2019 (COVID-19) pandemic, large differences in susceptibility and mortality due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection have been reported between populations in Europe and South Asia. While both host and environmental factors (including Mycobacterium bovis BCG vaccination) have been proposed to explain this, the potential biological substrate of these differences is unknown. We purified peripheral blood mononuclear cells from individuals living in India and the Netherlands at baseline and 10 to 12 weeks after BCG vaccination. We compared chromatin accessibility between the two populations at baseline, as well as gene transcription profiles and cytokine production capacities upon stimulation. The chromatin accessibility of genes important for adaptive immunity was higher in the Indians than in the Europeans, while the latter had more accessible chromatin regions in genes of the innate immune system. At the transcriptional level, we observed that the Indian volunteers displayed a more tolerant immune response to stimulation, in contrast to a more exaggerated response in the Europeans. BCG vaccination strengthened the tolerance program in the Indians but not in the Europeans. These differences may partly explain the different impact of COVID-19 on the two populations. IMPORTANCE In this study, we assessed the differences in immune responses in individuals from India and Europe. This aspect is of great relevance, because of the described differences in morbidity and mortality between India and Europe during the pandemic. We found a significant difference in chromatin accessibility in immune cells from the two populations, followed by a more balanced and effective response in individuals from India. These exciting findings represent a very important piece of the puzzle for understanding the COVID-19 pandemic at a global level.
RESUMO
Infections and vaccines can induce enhanced long-term responses in innate immune cells, establishing an innate immunological memory termed trained immunity. Here, we show that monocytes with a trained immunity phenotype, due to exposure to the Bacillus Calmette-Guérin (BCG) vaccine, are characterized by an increased biosynthesis of different lipid mediators (LM) derived from long-chain polyunsaturated fatty acids (PUFA). Pharmacological and genetic approaches show that long-chain PUFA synthesis and lipoxygenase-derived LM are essential for the BCG-induced trained immunity responses of human monocytes. Furthermore, products of 12-lipoxygenase activity increase in monocytes of healthy individuals after BCG vaccination. Grasping the underscoring lipid metabolic pathways contributes to our understanding of trained immunity and may help to identify therapeutic tools and targets for the modulation of innate immune responses.
Assuntos
Vacina BCG , Imunidade Treinada , Humanos , Imunidade Inata , Lipoxigenases , LipídeosRESUMO
OBJECTIVES: The COVID-19 pandemic increases healthcare worker (HCW) absenteeism. The bacillus Calmette-Guérin (BCG) vaccine may provide non-specific protection against respiratory infections through enhancement of trained immunity. We investigated the impact of BCG vaccination on HCW absenteeism during the COVID-19 pandemic. METHODS: HCWs exposed to COVID-19 patients in nine Dutch hospitals were randomized to BCG vaccine or placebo in a 1:1 ratio, and followed for one year using a mobile phone application. The primary endpoint was the self-reported number of days of unplanned absenteeism for any reason. Secondary endpoints included documented COVID-19, acute respiratory symptoms or fever. This was an investigator-funded study, registered at ClinicalTrials.gov (NCT03987919). RESULTS: In March/April 2020, 1511 HCWs were enrolled. The median duration of follow-up was 357 person-days (interquartile range [IQR], 351 to 361). Unplanned absenteeism for any reason was observed in 2.8% of planned working days in the BCG group and 2.7% in the placebo group (adjusted relative risk 0.94; 95% credible interval, 0.78-1.15). Cumulative incidences of documented COVID-19 were 14.2% in the BCG and 15.2% in the placebo group (adjusted hazard ratio (aHR) 0.94; 95% confidence interval (CI), 0.72-1.24). First episodes of self-reported acute respiratory symptoms or fever occurred in 490 (66.2%) and 443 (60.2%) participants, respectively (aHR: 1.13; 95% CI, 0.99-1.28). Thirty-one serious adverse events were reported (13 after BCG, 18 after placebo), none considered related to study medication. CONCLUSIONS: During the COVID-19 pandemic, BCG-vaccination of HCW exposed to COVID-19 patients did not reduce unplanned absenteeism nor documented COVID-19.
Assuntos
COVID-19 , Mycobacterium bovis , Absenteísmo , Vacina BCG , COVID-19/epidemiologia , COVID-19/prevenção & controle , Pessoal de Saúde , Humanos , Pandemias/prevenção & controle , SARS-CoV-2RESUMO
A growing number of studies show that innate immune cells can undergo functional reprogramming, facilitating a faster and enhanced response to heterologous secondary stimuli. This concept has been termed "trained immunity." We outline here a protocol to recapitulate this in vitro using adherent monocytes from consecutive isolation of peripheral blood mononuclear cells. The induction of trained immunity and the associated functional reprogramming of monocytes is described in detail using ß-glucan (from Candida albicans) and Bacillus Calmette-Guérin as examples. For complete details on the use and execution of this protocol, please refer to Repnik et al. (2003) and Bekkering et al. (2016).