RESUMO
Rice is a crucial food source and an important economic activity globally. Rice fields provide habitats for birds and other organisms but also serve as ideal breeding grounds for mosquitoes, including potential vectors such as Culex, Aedes, and Anopheles. There is an urgent need to manage mosquitoes associated with rice crops, as they are important pests and vectors of diverse pathogens. Effective management should rely on cost-effective, legislative, and environmentally sustainable approaches. We gathered information from various sources on surveillance, phenology, mosquito nuisance, vector-borne diseases and control measures in the main rice paddies of the five major rice-producing regions in Europe: Italy, Spain, Greece, Portugal, and France. Mosquito problems in rice paddies are prevalent across most analyzed regions, with entomological and virological surveillance efforts varying in intensity and timing. Aedes caspius mosquitoes significantly contribute to nuisance levels, while recent West Nile virus (WNV) circulation poses the most serious threat, as these habitats support high densities of mosquito vectors such as Culex pipiens, Culex modestus, and Culex perexiguus. Different mosquito control strategies are applied, ranging from centralized programs to localized interventions funded by public entities and implemented by public or private companies. Biological larviciding with Bacillus thuringiensis serovar. israelensis is the primary method used, supplemented by adulticiding during epidemic outbreaks in nearby urban areas. These management approaches reflect diverse regional contexts and highlight the importance of adaptive strategies in addressing mosquito-related challenges across rice paddies in Europe.
RESUMO
In August 2023, six locally acquired dengue virus 1 infections were detected in Lodi province, Lombardy Region, in northern Italy, where the vector Aedes albopictus is present. Four cases were hospitalised, none died. The viruses clustered with Peruvian and Brazilian strains collected between 2021 and 2023. This preliminary report highlights the importance of continued integrated surveillance of imported vector-borne virus infections and the potential for tropical disease outbreaks in highly populated regions of northern Italy where competent vectors are present.
Assuntos
Aedes , Doenças Transmissíveis Importadas , Dengue , Humanos , Animais , Mosquitos Vetores , Surtos de Doenças , Itália/epidemiologia , Dengue/epidemiologiaRESUMO
Eight ticks were found in Comacchio (FE), Italy parasitizing a young black iguana (Ctenosaura similis) that had been accidentally transported in a commercial plant container from Costa Rica. Specimens were identified morphologically as Amblyomma scutatum and then confirmed by the barcoding of the mitochondrial cytochrome c oxidase subunit 1 gene. Amblyomma scutatum is a common tick known to infest reptiles in Central America, Mexico, and Venezuela, but not in Europe. In Italy, the possibility for this tick to become endemic is unlikely because of the absence of its principal hosts. Nevertheless, this finding confirms the high risk of introducing exotic species that is linked with global commerce and therefore the need for veterinary control of shipments.
Assuntos
Ixodidae , Lagartos , Infestações por Carrapato , Carrapatos , Animais , Ixodidae/genética , Amblyomma , Infestações por Carrapato/epidemiologia , Infestações por Carrapato/veterinária , ItáliaRESUMO
BACKGROUND: In Italy, malaria was endemic until the 1970s, when it was declared eradicated by WHO. Nowadays, with the persistence of competent mosquito populations, the effect of climate change, and increased possibility of importing malaria parasites from endemic counties due to growing migration, a malaria resurgence in Italy has become more likely. Hence, enhancing the understanding of the current distribution of the Anopheles maculipennis complex and the factors that influence the presence of this malaria vector is crucial, especially in Northern Italy, characterised by a high density of both human population and livestock. METHODS: To assess the presence and abundance of malaria vectors, a 4-year field survey in the plain areas of Lombardy and Emilia-Romagna region in Italy was conducted. Every sampling point was characterised in space by the land use in a 500-m radius and in time considering meteorological data collected in the short and long time periods before sampling. We combined the results of a linear regression model with a random forest analysis to understand the relative importance of the investigated niche dimensions in determining Anopheles mosquito presence and abundance. RESULTS: The estimated normalised variable importance indicates that rice fields were the most important land use class explaining the presence of Anopheles, followed by transitional woodlands and shrubland. Farm buildings were the third variable in terms of importance, likely because of the presence of animal shelters, followed by urbanised land. The two most important meteorological variables influencing the abundance of Anopheles in our study area were mean temperature in the 24 h before the sampling date and the sum of degree-days with temperature between 18 °C and 30 °C in the 14 days before the sampling date. CONCLUSIONS: The results obtained in this study could be helpful in predicting the risk of autochthonous malaria transmission, based on local information on land cover classes that might facilitate the presence of malaria vectors and presence of short- and medium-term meteorological conditions favourable to mosquito development and activity. The results can support the design of vector control measures through environmental management.
Assuntos
Anopheles , Asteraceae , Malária , Animais , Humanos , Malária/epidemiologia , Mosquitos Vetores , Itália/epidemiologiaRESUMO
BACKGROUND: Mosquitoes (Culicidae), as disease vectors, represent a risk for human health worldwide. Repeated introductions of alien mosquito species and the spread of invasive species have been recorded in different countries. Traditionally, identification of mosquitoes relies on morphological observation. However, morphology-based identification is associated with a number of potential disadvantages, such as the high level of specialisation of the operator and its limited applicability to damaged samples. In these cases, species identification is achieved through molecular methods based on DNA amplification. Molecular-based taxonomy has also enabled the development of techniques for the study of environmental DNA (eDNA). Previous studies indicated the 16S mitochondrial ribosomal RNA (rRNA) gene as a promising target for this application; however, 16S rRNA sequences are available for only a limited number of mosquito species. In addition, although primers for the 16S rRNA gene were designed years ago, they are based on limited numbers of mosquito sequences. Thus, the aims of this study were to: (i) design pan-mosquito 16S rRNA gene primers; (ii) using these primers, generate a 16S rRNA gene mosquito reference library (with a focus on mosquitoes present in Italy); and (iii) compare the discriminatory power of the 16S rRNA gene with two widely used molecular markers, cytochrome c oxidase subunit 1 mitochondrial gene (COI) and internal transcribed spacer 2 (ITS2). METHODS: A total of six mosquito genera (28 mosquito species) were included in this study: Aedes (n = 16 species), Anopheles (5 species), Coquillettidia (1 species), Culex (3 species), Culiseta (2 species) and Uranotaenia (1 species). DNA was extracted from the whole mosquito body, and more than one specimen for each species was included in the analysis. Sanger sequencing was used to generate DNA sequences that were then analysed through the Barcode of Life Data Systems (BOLD). Phylogenetic analyses were also performed. RESULTS: Novel 16S rDNA gene, COI and ITS2 sequences were generated. The 16S rRNA gene was shown to possess sufficient informativeness for the identification of mosquito species, with a discriminatory power equivalent to that of COI. CONCLUSIONS: This study contributes to the generation of DNA barcode libraries, focussed on Italian mosquitoes, with a significant increase in the number of 16S rRNA gene sequences. We hope that these novel sequences will provide a resource for studies on the biodiversity, monitoring and metabarcoding of mosquitoes, including eDNA-based approaches.
Assuntos
Culicidae , Código de Barras de DNA Taxonômico , Espécies Introduzidas , Mosquitos Vetores , Filogenia , RNA Ribossômico 16S , Animais , RNA Ribossômico 16S/genética , Culicidae/genética , Culicidae/classificação , Itália , Mosquitos Vetores/genética , Mosquitos Vetores/classificação , Biblioteca Gênica , Complexo IV da Cadeia de Transporte de Elétrons/genéticaRESUMO
In recent years, burial systems have covered increasingly higher costs due to the pollution caused by decomposition products. These products are understood as chemicals and microorganisms in the surrounding soil and groundwater and represent a topical issue. The purpose of this research was to ascertain the extent of decomposition when pig carcasses are buried in two different burial systems ("aerated" vs. "watertight") and catalogue the arthropods associated with burials at different time-points of removal from niches (after 6, 12, 24, 36, and 60 months). Thirteen taxa were collected in aerated niches, whereas five were collected in watertight niches. The initial access or exclusion of insect colonisers affected overall functional activity. Two Diptera species, Hydrotaea capensis and Megaselia scalaris, were the most abundant, supporting the hypothesis that insects can colonise carcasses in aerated burial systems. Furthermore, some species of bacteria have been documented as facilitators of the initial decomposition process of the carcass. Most bacterial colonies develop only in aerated niches. The trial showed that the first enzymatic-bacterial and insect actions helped promote the process of cadaveric decomposition and later skeletonisation, mainly when associated with aeration modes of the tomb/mound. The results obtained provide essential information on the process of human decomposition and taphonomy in cemeteries. Moreover, these data could benefit forensic science by adding information on insect colonisation and body modification in medico-legal investigations concerning the post-mortem interval in exhumed bodies and illegal burials.
RESUMO
The genus Flavivirus, family Flaviviridae, includes a number of important arthropod-transmitted human pathogens such as dengue viruses, West Nile virus, Japanese encephalitis virus and yellow fever virus. In addition, the genus includes flaviviruses without a known vertebrate reservoir, which have been detected only in insects, particularly in mosquitoes, such as cell fusing agent virus, Kamiti River virus, Culex flavivirus, Aedes flavivirus, Quang Binh virus, Nakiwogo virus and Calbertado virus. Reports of the detection of these viruses with no recognized pathogenic role in humans are increasing in mosquitoes collected around the world, particularly in those sampled in entomological surveys targeting pathogenic flaviviruses. The presence of six potential flaviviruses, detected from independent European arbovirus surveys undertaken in the Czech Republic, Italy, Portugal, Spain and the UK between 2007 and 2010, is reported in this work. Whilst the Aedes flaviviruses, detected in Italy from Aedes albopictus mosquitoes, had already been isolated in Japan, the remaining five viruses have not been reported previously: one was detected in Italy, Portugal and Spain from Aedes mosquitoes (particularly from Aedes caspius), one in Portugal and Spain from Culex theileri mosquitoes, one in the Czech Republic and Italy from Aedes vexans, one in the Czech Republic from Aedes vexans and the last in the UK from Aedes cinereus. Phylogenetic analysis confirmed the close relationship of these putative viruses to other insect-only flaviviruses.
Assuntos
Culex/virologia , Infecções por Flavivirus/virologia , Flavivirus/isolamento & purificação , Insetos Vetores/virologia , Animais , Europa (Continente) , Flavivirus/classificação , Flavivirus/genética , Humanos , Dados de Sequência Molecular , FilogeniaRESUMO
Ensuring food security is one of the main challenges facing the world over the next 30 years. There is, thus, an urgent need to significantly increase the supply of sustainable protein that can be transformed into animal feed. Proteins from insects offer a valuable alternative. This article presents the results of challenge tests conducted to investigate the dynamics of the microbial load of Salmonella enterica Typhimurium and Listeria monocytogenes in black soldier fly (Hermetia illucens) larvae grown on contaminated substrates. Four separate challenge tests were performed on two substrates: the Gainesville diet and a homemade diet. The challenge test procedure was carried out in accordance with ISO/DIS 20976-2 (under development). The results of this study show that, when grown on contaminated substrates, BSF larvae do not eliminate Salmonella Typhimurium or L. monocytogenes, but can reduce their microbial load. Sanitation processes downstream of the breeding of BSF larvae are, however, required to reduce the microbiological risks of this novel food.
RESUMO
This study investigated the species composition and density of sand flies in the Lombardy region (Northern Italy). Sand flies were collected using CDC traps baited with CO2 (CO2-CDC traps) between June and August 2021. A total of 670 sand flies were collected. The specimens were identified as seven species belonging to two genera, Phlebotomus and Sergentomyia, namely, S. minuta, Ph. perniciosus, Ph. perfiliewii, Ph. neglectus, Ph. mascitti, Ph. papatasi, and Ph. ariasi. Phlebotomus perniciosus was the most abundant species (87.76%), followed by Ph. perfiliewii (7.31%), Ph. neglectus (3.13%), S. minuta (0.75%), Ph. mascitti (0.6%), Ph. papatasi (0.3%), and Ph. ariasi, for which only one specimen was identified. Among these identified species, five are considered vectors of Leishmania, which causes cutaneous and visceral leishmaniasis. As vector presence increases the risk of vector-borne leishmaniasis, these results suggest that Northern Italy could be a potential area of pathogen circulation over the next few years. These preliminary results suggest that the risk of borne leishmaniasis is high in this region of Northern Italy. Monitoring the distribution of sand fly species in areas suitable for their persistence is important for control programs aimed at reducing the risk of leishmaniasis infection.
RESUMO
The treatment of municipal wastewater produces clean water and sewage sludge (MSS), the management of which has become a serious problem in Europe. The typical destination of MSS is to spread it on land, but the presence of heavy metals and pollutants raises environmental and health concerns. Bioconversion mediated by larvae of black soldier fly (BSFL) Hermetia illucens (Diptera, Stratiomyidae: Hermetiinae) may be a strategy for managing MSS. The process adds value by generating larvae which contain proteins and lipids that are suitable for feed and/or for industrial or energy applications, and a residue as soil conditioner. MSS from the treatment plant of Ladispoli (Rome province) was mixed with an artificial fly diet at 50% and 75% (fresh weight basis) to feed BSFL. Larval performance, substrate reduction, and the concentrations of 12 metals in the initial and residual substrates and in larval bodies at the end of the experiments were assessed. Larval survival (> 96%) was not affected. Larval weight, larval development, larval protein and lipid content, and waste reduction increased in proportion the increase of the co-substrate (fly diet). The concentration of most of the 12 elements in the residue was reduced and, in the cases of Cu and Zn, the quantities dropped under the Italian national maximum permissible content for fertilizers. The content of metals in mature larvae did not exceed the maximum allowed concentration in raw material for feed for the European Directive. This study contributes to highlight the potential of BSF for MSS recovery and its valorization. The proportion of fly diet in the mixture influenced the process, and the one with the highest co-substrate percentage performed best. Future research using other wastes or by-products as co-substrate of MSS should be explored to determine their suitability.
Assuntos
Dípteros , Poluentes Ambientais , Metais Pesados , Animais , Fertilizantes , Larva , Lipídeos , Metais Pesados/análise , Esgotos , Solo , Águas Residuárias , ÁguaRESUMO
In Italy, the West Nile Virus surveillance plan considers a multidisciplinary approach to identify the presence of the virus in the environment (entomological, ornithological, and equine surveillance) and to determine the risk of infections through potentially infected donors (blood and organ donors). The costs associated with the surveillance program for the Lombardy Region between 2014 and 2018 were estimated. The costs of the program were compared with a scenario in which the program was not implemented, requiring individual blood donation nucleic acid amplification tests (NAT) to detect the presence of WNV in human samples throughout the seasonal period of vector presence. Considering the five-year period, the application of the environmental/veterinary surveillance program allowed a reduction in costs incurred in the Lombardy Region of 7.7 million EUR. An integrated surveillance system, including birds, mosquito vectors, and dead-end hosts such as horses and humans, can prevent viral transmission to the human population, as well as anticipate the detection of WNV using NAT in blood and organ donors. The surveillance program within a One Health context has given the possibility to both document the expansion of the endemic area of WNV in northern Italy and avoid most of the NAT-related costs.
Assuntos
Culicidae , Saúde Única , Febre do Nilo Ocidental , Vírus do Nilo Ocidental , Animais , Aves , Cavalos , Itália/epidemiologia , Mosquitos Vetores , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/veterináriaRESUMO
BACKGROUND: West Nile virus (WNV) transmission was much greater in 2018 than in previous seasons in Europe. Focusing on Emilia-Romagna region (northern Italy), we analyzed detailed entomological and epidemiological data collected in 2013-2018 to quantitatively assess environmental drivers of transmission and explore hypotheses to better understand why the 2018 epidemiological season was substantially different than the previous seasons. In particular, in 2018 WNV was detected at least two weeks before the observed circulation in 2013-2017 and in a larger number of mosquito pools. Transmission resulted in 100 neuroinvasive human cases in the region, more than the total number of cases recorded between 2013 and 2017. METHODOLOGY: We used temperature-driven mathematical models calibrated through a Bayesian approach to simulate mosquito population dynamics and WNV infection rates in the avian population. We then estimated the human transmission risk as the probability, for a person living in the study area, of being bitten by an infectious mosquito in a given week. Finally, we translated such risk into reported WNV human infections. PRINCIPAL FINDINGS: The estimated prevalence of WNV in the mosquito and avian populations were significantly higher in 2018 with respect to 2013-2017 seasons, especially in the eastern part of the region. Furthermore, peak avian prevalence was estimated to have occurred earlier, corresponding to a steeper decline towards the end of summer. The high mosquito prevalence resulted in a much greater predicted risk for human transmission in 2018, which was estimated to be up to eight times higher than previous seasons. We hypothesized, on the basis of our modelling results, that such greater WNV circulation might be partially explained by exceptionally high spring temperatures, which have likely helped to amplify WNV transmission at the beginning of the 2018 season.
Assuntos
Culex/virologia , Temperatura , Febre do Nilo Ocidental/epidemiologia , Animais , Aves/virologia , Feminino , Humanos , Incidência , Mordeduras e Picadas de Insetos/epidemiologia , Itália/epidemiologia , Modelos Teóricos , Mosquitos Vetores/virologia , Estações do Ano , Febre do Nilo Ocidental/transmissão , Vírus do Nilo Ocidental/isolamento & purificaçãoRESUMO
From 1 May 2015 to 31 October 2015 over 20 million visitors from all over the world visited the Universal Exhibition (EXPO) hosted by Milan (Lombardy region, Italy), raising concerns about the possible introduction of mosquito-borne diseases from endemic countries. The entomological surveillance protocol performed in Lombardy over the last three years was implemented in the EXPO area and in the two major regional airports using both Center for Disease Control CO2 and Biogents Sentinel traps. This surveillance aimed to estimate the presence and densities of putative vectors, and also to support investigations, including the vector species involved and area of diffusion, on the local spread of Chikungunya, Dengue and West Nile viruses (WNV) by competent vectors. From 3544 mosquitoes belonging to five different species, 28 pools of Culex spp. and 45 pools of Aedes spp. were screened for the presence of WNV, and for both Chikungunya and flaviviruses, respectively. The entomological surveillance highlighted a low density of potential vectors in the surveyed areas and did not reveal the presence of Chikungunya or Dengue viruses in the local competent vectors inside the EXPO area or in the two airports. In addition, the surveillance reported a low density of Culex spp. mosquitoes, which all tested negative for WNV.
Assuntos
Aedes/virologia , Vírus Chikungunya/isolamento & purificação , Culex/virologia , Vírus da Dengue/isolamento & purificação , Vírus do Nilo Ocidental/isolamento & purificação , Animais , Arbovírus/isolamento & purificação , Itália , Densidade DemográficaRESUMO
West Nile virus (WNV) is a recently re-emerged health problem in Europe. In Italy, an increasing number of outbreaks of West Nile disease, with occurrences of human cases, have been reported since 2008. This is particularly true in northern Italy, where entomological surveillance systems have been implemented at a regional level. The aim of this study was to use, for the first time, all the entomological data collected in the five regions undergoing surveillance for WNV in northern Italy to characterize the viral circulation (at a spatial and temporal scale), identify potential mosquito vectors, and specify relationships between virus circulation and meteorological conditions. In 2013, 286 sites covering the entire Pianura Padana area were monitored. A total of 757,461 mosquitoes were sampled. Of these, 562,079 were tested by real-time PCR in 9,268 pools, of which 180 (1.9%) were positive for WNV. The largest part of the detected WNV sequences belonged to lineage II, demonstrating that, unlike those in the past, the 2013 outbreak was mainly sustained by this WNV lineage. This surveillance also detected the Usutu virus, a WNV-related flavivirus, in 241 (2.6%) pools. The WNV surveillance systems precisely identified the area affected by the virus and detected the viral circulation approximately two weeks before the occurrence of onset of human cases. Ninety percent of the sampled mosquitoes were Culex pipiens, and 178/180 WNV-positive pools were composed of only this species, suggesting this mosquito is the main WNV vector in northern Italy. A significantly higher abundance of the vector was recorded in the WNV circulation area, which was characterized by warmer and less rainy conditions and greater evapotranspiration compared to the rest of the Pianura Padana, suggesting that areas exposed to these conditions are more suitable for WNV circulation. This observation highlights warmer and less rainy conditions as factors able to enhance WNV circulation and cause virus spillover outside the sylvatic cycle.
Assuntos
Culex/virologia , Monitoramento Epidemiológico , Insetos Vetores/virologia , Febre do Nilo Ocidental/epidemiologia , Vírus do Nilo Ocidental/isolamento & purificação , Animais , Surtos de Doenças , Humanos , Itália/epidemiologia , Tempo (Meteorologia)RESUMO
This study investigates the pupal development times of the blow fly Calliphora vicina, which were studied in the laboratory at six different constant temperatures (15, 20, 23, 25, 28, and 30°C each ± 1°C). Lower thresholds (tL ) for development were estimated from the linear regression of the developmental rates on each temperature. These data have made it possible to calculate the accumulated degree days (ADD) necessary for C. vicina to complete the larval stage and to achieve adult emergence. The minimal duration of development from oviposition to adult emergence was found to be inversely related to temperature. Additionally, six landmarks in pupal development are showed, and for each of the landmarks, the ADD value was calculated for every rearing temperature involved. These data assist in calculating the duration of the pupal stage based on morphological characteristics and would be of great value for future forensic entomological casework.
Assuntos
Dípteros/crescimento & desenvolvimento , Pupa/crescimento & desenvolvimento , Temperatura , Animais , Comportamento Alimentar , Larva/crescimento & desenvolvimento , Modelos Lineares , Microscopia , OviposiçãoRESUMO
Over a 7-day period beginning 8 August 2011, a large number of wild birds of several species were found dead or with neurologic clinical signs along the shore of Crostolo stream, in the Emilia Romagna region, Italy. Twenty-eight Mallards (Anas platyrhynchos), two Hooded Crows (Corvus corone cornix), and three coypus (Myocastor coypus) were found moribund on the Crostolo stream bank, collected, and sent to Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, Reggio Emilia Section. The cause of mortality was determined to be Clostridium botulinum type C toxin. The toxin was identified by a mouse bioassay for botulinum toxins and confirmed in bird sera and blowfly larvae (Lucilia caesar) collected from the stomachs of birds.
Assuntos
Aves , Toxinas Botulínicas/toxicidade , Botulismo/veterinária , Surtos de Doenças/veterinária , Mamíferos , Animais , Botulismo/epidemiologia , Itália/epidemiologiaRESUMO
BACKGROUND: The circulation of West Nile virus and Usutu virus was detected in the Emilia-Romagna region in 2008 and 2009. To evaluate the extent of circulation of both viruses, environmental surveillance, based on bird and mosquito testing, was conducted in 2008 and gradually improved over the years. METHODS: In February-March 2009-2011, 5,993 hibernating mosquitoes were manually sampled, out of which 80.1% were Culex pipiens; none tested positive for the viruses. From 2008 to 2011, 946,213 mosquitoes, sampled between May and October, were tested; 86.5% were Cx. pipiens. West Nile virus was detected in 32 Cx. pipiens pools, and Usutu virus was detected in 229 mosquito pools (217 Cx. pipiens, 10 Aedes albopictus, one Anopheles maculipennis s.l., and one Aedes caspius). From 2009 to 2011, of 4,546 birds collected, 42 tested positive for West Nile virus and 48 for Usutu virus. West Nile virus and Usutu virus showed different patterns of activity during the 2008-2011 surveillance period. West Nile virus was detected in 2008, 2009, and 2010, but not in 2011. Usutu virus, however, was continuously active throughout 2009, 2010, and 2011. CONCLUSIONS: The data strongly suggest that both viruses overwinter in the surveyed area rather than being continually reintroduced every season. The lack of hibernating mosquitoes testing positive for the viruses and the presence of positive birds sampled early in the season support the hypothesis that the viruses overwinter in birds rather than in mosquitoes. Herd immunity in key bird species could explain the decline of West Nile virus observed in 2011, while the persistence of Usutu virus may be explained by not yet identified reservoirs. Reported results are comparable with a peri-Mediterranean circulation of the West Nile virus lineage 1 related strain, which became undetectable in the environment after two to three years of obvious circulation.
Assuntos
Flavivirus/fisiologia , Vírus do Nilo Ocidental/fisiologia , Animais , Aves/virologia , Culex/virologia , Coleta de Dados , Monitoramento Ambiental , Flavivirus/isolamento & purificação , Infecções por Flavivirus/epidemiologia , Infecções por Flavivirus/virologia , Geografia , Itália/epidemiologia , Estações do Ano , Febre do Nilo Ocidental/epidemiologia , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/isolamento & purificaçãoRESUMO
BACKGROUND: In 2008, after the first West Nile virus (WNV) detection in the Emilia-Romagna region, a surveillance system, including mosquito- and bird-based surveillance, was established to evaluate the virus presence. Surveillance was improved in following years by extending the monitoring to larger areas and increasing the numbers of mosquitoes and birds tested. METHODOLOGY/PRINCIPAL FINDINGS: A network of mosquito traps, evenly distributed and regularly activated, was set up within the surveyed area. A total of 438,558 mosquitoes, grouped in 3,111 pools and 1,276 birds (1,130 actively sampled and 146 from passive surveillance), were tested by biomolecular analysis. The survey detected WNV in 3 Culex pipiens pools while Usutu virus (USUV) was found in 89 Cx. pipiens pools and in 2 Aedes albopictus pools. Two birds were WNV-positive and 12 were USUV-positive. Furthermore, 30 human cases of acute meningoencephalitis, possibly caused by WNV or USUV, were evaluated for both viruses and 1,053 blood bags were tested for WNV, without any positive result. CONCLUSIONS/SIGNIFICANCE: Despite not finding symptomatic human WNV infections during 2010, the persistence of the virus, probably due to overwintering, was confirmed through viral circulation in mosquitoes and birds, as well as for USUV. In 2010, circulation of the two viruses was lower and more delayed than in 2009, but this decrease was not explained by the relative abundance of Cx. pipiens mosquito, which was greater in 2010. The USUV detection in mosquito species confirms the role of Cx. pipiens as the main vector and the possible involvement of Ae. albopictus in the virus cycle. The effects of meteorological conditions on the presence of USUV-positive mosquito pools were considered finding an association with drought conditions and a wide temperature range. The output produced by the surveillance system demonstrated its usefulness and reliability in terms of planning public health policies.
Assuntos
Aves/virologia , Culicidae/virologia , Vírus do Nilo Ocidental/isolamento & purificação , Animais , Clima , Difusão , Fenômenos Ecológicos e Ambientais , Humanos , Itália , Mutação , Reação em Cadeia da Polimerase , Vírus do Nilo Ocidental/genéticaRESUMO
BACKGROUND: In recent years human diseases due to mosquito-borne viruses were increasingly reported in Emilia-Romagna region (Italy), from the chikungunya virus in 2007 to the West Nile virus (WNV) in 2008. An extensive entomological survey was performed in 2009 to establish the presence and distribution of mosquito arboviruses in this region, with particular reference to flaviviruses. METHODOLOGY/PRINCIPAL FINDINGS: From May 6 to October 31, a total of 190,516 mosquitoes were sampled in georeferenced stations, grouped in 1,789 pools according date of collection, location, and species, and analyzed by reverse transcription polymerase chain reaction (RT-PCR) to detect the presence of RNA belong to Flavivirus genus. WNV was detected in 27 mosquito pools, producing sequences similar to those of birds and human strains obtained in 2008 outbreak, pointed out the probable virus overwintering. Isolation of WNV was achieved from one of these pools. Moreover 56 pools of mosquitoes tested positive for Usutu virus (USUV). Most PCR positive pools consisted of Culex pipiens, which also was the most analyzed mosquito species (81.4% of specimens); interestingly, USUV RNA was also found in two Aedes albopictus mosquito pools. Simultaneous circulation of WNV and USUV in the survey area was highlighted by occurrence of 8 mosquito WNV- and USUV-positive pools and by the overlaying of the viruses "hot spots", obtained by kernel density estimation (KDE) analysis. Land use of sampled stations pointed out a higher proportion of WNV-positive Cx. pipiens pool in rural environments respect the provenience of total sampled pool, while the USUV-positive pools were uniformly captured in the different environments. CONCLUSIONS/SIGNIFICANCE: Obtained data highlighting the possible role of Cx. pipiens mosquito as the main vector for WNV and USUV in Northern Italy, and the possible involvement of Ae. albopictus mosquito in USUV cycle. The described mosquito-based surveillance could constitute the foundation for a public health alert system targeting mosquito borne arboviruses.
Assuntos
Surtos de Doenças/prevenção & controle , Surtos de Doenças/estatística & dados numéricos , Flavivirus/metabolismo , Febre do Nilo Ocidental/transmissão , Febre do Nilo Ocidental/virologia , Vírus do Nilo Ocidental/metabolismo , Aedes , Animais , Culex , Culicidae , Geografia , Humanos , Itália , Filogenia , Reação em Cadeia da PolimeraseRESUMO
Recently, Italy-particularly the Emilia-Romagna region-was the location of consecutive outbreaks of human diseases caused by the arboviruses chikungunya virus and West Nile virus. The two outbreaks, spread by different species of mosquitoes, were not related, but pointed out the lack of an arboviral surveillance program in this region. Beginning in 2007 entomological surveillance was initiated in the Emilia-Romagna region, and in 2008 the program was improved and extended at Lombardia region. Using CO(2)-baited traps, 65,292 mosquitoes were collected; pooled by date of collection, location, and species; macerated manually; and tested by reverse transcription (RT)-polymerase chain reaction for the presence of alphaviruses, orthobunyaviruses, and flaviviruses. Amplicons were sequenced and employed for identification of viral RNA by basic local alignment search tool search in GenBank. Results of these assays showed (1) the presence of West Nile virus in two pools of Culex pipiens mosquitoes, (2) the presence of RNA of two orthobunyaviruses, Tahyna virus in a pool of Ochlerotatus caspius mosquitoes and Batai virus in a pool of Anopheles maculipennis mosquitoes, and (3) the presence of flavivirus RNAs in pools of Oc. caspius, Aedes albopictus, and Aedes vexans mosquitoes; the sequences of these amplicons were most closely related to flaviviruses that have been detected only in mosquitoes and had no recognized vertebrate host (Aedes flavivirus, Culex flavivirus, and Kamiti River virus).