RESUMO
Aggregates of medin amyloid (a fragment of the protein MFG-E8, also known as lactadherin) are found in the vasculature of almost all humans over 50 years of age1,2, making it the most common amyloid currently known. We recently reported that medin also aggregates in blood vessels of ageing wild-type mice, causing cerebrovascular dysfunction3. Here we demonstrate in amyloid-ß precursor protein (APP) transgenic mice and in patients with Alzheimer's disease that medin co-localizes with vascular amyloid-ß deposits, and that in mice, medin deficiency reduces vascular amyloid-ß deposition by half. Moreover, in both the mouse and human brain, MFG-E8 is highly enriched in the vasculature and both MFG-E8 and medin levels increase with the severity of vascular amyloid-ß burden. Additionally, analysing data from 566 individuals in the ROSMAP cohort, we find that patients with Alzheimer's disease have higher MFGE8 expression levels, which are attributable to vascular cells and are associated with increased measures of cognitive decline, independent of plaque and tau pathology. Mechanistically, we demonstrate that medin interacts directly with amyloid-ß to promote its aggregation, as medin forms heterologous fibrils with amyloid-ß, affects amyloid-ß fibril structure, and cross-seeds amyloid-ß aggregation both in vitro and in vivo. Thus, medin could be a therapeutic target for prevention of vascular damage and cognitive decline resulting from amyloid-ß deposition in the blood vessels of the brain.
Assuntos
Doença de Alzheimer , Peptídeos beta-Amiloides , Precursor de Proteína beta-Amiloide , Animais , Humanos , Camundongos , Pessoa de Meia-Idade , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Precursor de Proteína beta-Amiloide/metabolismo , Disfunção Cognitiva , Camundongos Transgênicos , Placa Amiloide/metabolismo , Proteínas tau/metabolismoRESUMO
Innate immune memory is a vital mechanism of myeloid cell plasticity that occurs in response to environmental stimuli and alters subsequent immune responses. Two types of immunological imprinting can be distinguished-training and tolerance. These are epigenetically mediated and enhance or suppress subsequent inflammation, respectively. Whether immune memory occurs in tissue-resident macrophages in vivo and how it may affect pathology remains largely unknown. Here we demonstrate that peripherally applied inflammatory stimuli induce acute immune training and tolerance in the brain and lead to differential epigenetic reprogramming of brain-resident macrophages (microglia) that persists for at least six months. Strikingly, in a mouse model of Alzheimer's pathology, immune training exacerbates cerebral ß-amyloidosis and immune tolerance alleviates it; similarly, peripheral immune stimulation modifies pathological features after stroke. Our results identify immune memory in the brain as an important modifier of neuropathology.
Assuntos
Encéfalo/imunologia , Encéfalo/patologia , Imunidade Inata , Memória Imunológica , Doenças do Sistema Nervoso/imunologia , Doenças do Sistema Nervoso/patologia , Doença de Alzheimer/imunologia , Doença de Alzheimer/patologia , Amiloidose/imunologia , Amiloidose/patologia , Animais , Modelos Animais de Doenças , Epigênese Genética , Feminino , Regulação da Expressão Gênica/imunologia , Humanos , Tolerância Imunológica , Inflamação/genética , Inflamação/imunologia , Masculino , Camundongos , Microglia/imunologia , Microglia/metabolismo , Acidente Vascular Cerebral/imunologia , Acidente Vascular Cerebral/patologiaRESUMO
Medin is the most common amyloid known in humans, as it can be found in blood vessels of the upper body in virtually everybody over 50 years of age. However, it remains unknown whether deposition of Medin plays a causal role in age-related vascular dysfunction. We now report that aggregates of Medin also develop in the aorta and brain vasculature of wild-type mice in an age-dependent manner. Strikingly, genetic deficiency of the Medin precursor protein, MFG-E8, eliminates not only vascular aggregates but also prevents age-associated decline of cerebrovascular function in mice. Given the prevalence of Medin aggregates in the general population and its role in vascular dysfunction with aging, targeting Medin may become a novel approach to sustain healthy aging.
Assuntos
Envelhecimento/metabolismo , Amiloide/metabolismo , Antígenos de Superfície/metabolismo , Proteínas do Leite/metabolismo , Doenças Vasculares/metabolismo , Idoso de 80 Anos ou mais , Amiloide/genética , Animais , Antígenos de Superfície/genética , Aorta/metabolismo , Aorta/patologia , Química Encefálica/fisiologia , Circulação Cerebrovascular/fisiologia , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Leite/genética , Doenças Vasculares/patologiaRESUMO
BACKGROUND: Lymphocytes have dichotomous functions in ischemic stroke. Regulatory T cells are protective, while IL-17A from innate lymphocytes promotes the infarct growth. With recent advances of T cell-subtype specific transgenic mouse models it now has become possible to study the complex interplay of T cell subpopulations in ischemic stroke. METHODS: In a murine model of experimental stroke we analyzed the effects of IL-10 on the functional outcome for up to 14 days post-ischemia and defined the source of IL-10 in ischemic brains based on immunohistochemistry, flow cytometry, and bone-marrow chimeric mice. We used neutralizing IL-17A antibodies, intrathecal IL-10 injections, and transgenic mouse models which harbor a deletion of the IL-10R on distinct T cell subpopulations to further explore the interplay between IL-10 and IL-17A pathways in the ischemic brain. RESULTS: We demonstrate that IL-10 deficient mice exhibit significantly increased infarct sizes on days 3 and 7 and enlarged brain atrophy and impaired neurological outcome on day 14 following tMCAO. In ischemic brains IL-10 producing immune cells included regulatory T cells, macrophages, and microglia. Neutralization of IL-17A following stroke reversed the worse outcome in IL-10 deficient mice and intracerebral treatment with recombinant IL-10 revealed that IL-10 controlled IL-17A positive lymphocytes in ischemic brains. Importantly, IL-10 acted differentially on αß and γδ T cells. IL-17A producing CD4+ αß T cells were directly controlled via their IL-10-receptor (IL-10R), whereas IL-10 by itself had no direct effect on the IL-17A production in γδ T cells. The control of the IL-17A production in γδ T cells depended on an intact IL10R signaling in regulatory T cells (Tregs). CONCLUSIONS: Taken together, our data indicate a key function of IL-10 in restricting the detrimental IL-17A-signaling in stroke and further supports that IL-17A is a therapeutic opportunity for stroke treatment.
Assuntos
Interleucina-10/uso terapêutico , Interleucina-17/antagonistas & inibidores , AVC Isquêmico/tratamento farmacológico , Animais , Anticorpos Neutralizantes/farmacologia , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Imuno-Histoquímica , Infarto da Artéria Cerebral Média/prevenção & controle , Injeções Espinhais , Interleucina-10/administração & dosagem , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptores de Interleucina-10/antagonistas & inibidores , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Resultado do TratamentoRESUMO
The hydrogen isotope ratio (HIR) of body water and, therefore, of all endogenously synthesized compounds in humans, is mainly affected by the HIR of ingested drinking water. As a consequence, the entire organism and all of its synthesized substrates will reflect alterations in the isotope ratio of drinking water, which depends on the duration of exposure. To investigate the effect of this change on endogenous urinary steroids relevant to doping-control analysis the hydrogen isotope composition of potable water was suddenly enriched from -50 to 200 and maintained at this level for two weeks for two individuals. The steroids under investigation were 5ß-pregnane-3α,20α-diol, 5α-androst-16-en-3α-ol, 3α-hydroxy-5α-androstan-17-one (ANDRO), 3α-hydroxy-5ß-androstan-17-one (ETIO), 5α-androstane-3α,17ß-diol, and 5ß-androstane-3α,17ß-diol (excreted as glucuronides) and ETIO, ANDRO and 3ß-hydroxyandrost-5-en-17-one (excreted as sulfates). The HIR of body water was estimated by determination of the HIR of total native urine, to trace the induced changes. The hydrogen in steroids is partly derived from the total amount of body water and cholesterol-enrichment could be calculated by use of these data. Although the sum of changes in the isotopic composition of body water was 150 , shifts of approximately 30 were observed for urinary steroids. Parallel enrichment in their HIR was observed for most of the steroids, and none of the differences between the HIR of individual steroids was elevated beyond recently established thresholds. This finding is important to sports drug testing because it supports the intended use of this novel and complementary methodology even in cases where athletes have drunk water of different HIR, a plausible and, presumably, inevitable scenario while traveling.
Assuntos
Deutério/análise , Água Potável/análise , Hidrogênio/análise , Esteroides/urina , Adulto , Colesterol/urina , Ingestão de Líquidos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Humanos , Masculino , Detecção do Abuso de Substâncias/métodosRESUMO
Multiple consensus statements have called for preclinical randomized controlled trials to improve translation in stroke research. We investigated the efficacy of an interleukin-17A neutralizing antibody in a multi-centre preclinical randomized controlled trial using a murine ischaemia reperfusion stroke model. Twelve-week-old male C57BL/6 mice were subjected to 45â min of transient middle cerebral artery occlusion in four centres. Mice were randomly assigned (1:1) to receive either an anti-interleukin-17A (500â µg) or isotype antibody (500â µg) intravenously 1 h after reperfusion. The primary endpoint was infarct volume measured by magnetic resonance imaging three days after transient middle cerebral artery occlusion. Secondary analysis included mortality, neurological score, neutrophil infiltration and the impact of the gut microbiome on treatment effects. Out of 136 mice, 109 mice were included in the analysis of the primary endpoint. Mixed model analysis revealed that interleukin-17A neutralization significantly reduced infarct sizes (anti-interleukin-17A: 61.77 ± 31.04â mm3; IgG control: 75.66 ± 34.79â mm3; P = 0.01). Secondary outcome measures showed a decrease in mortality (hazard ratio = 3.43, 95% confidence interval = 1.157-10.18; P = 0.04) and neutrophil invasion into ischaemic cortices (anti-interleukin-17A: 7222 ± 6108 cells; IgG control: 28 153 ± 23 206 cells; P < 0.01). There was no difference in Bederson score. The analysis of the gut microbiome showed significant heterogeneity between centres (R = 0.78, P < 0.001, n = 40). Taken together, neutralization of interleukin-17A in a therapeutic time window resulted in a significant reduction of infarct sizes and mortality compared with isotype control. It suggests interleukin-17A neutralization as a potential therapeutic target in stroke.
RESUMO
Immune cells of myeloid lineage are encountered in the Alzheimer's disease (AD) brain, where they cluster around amyloid-ß plaques. However, assigning functional roles to myeloid cell subtypes has been problematic, and the potential for peripheral myeloid cells to alleviate AD pathology remains unclear. Therefore, we asked whether replacement of brain-resident myeloid cells with peripheral monocytes alters amyloid deposition in two mouse models of cerebral ß-amyloidosis (APP23 and APPPS1). Interestingly, early after repopulation, infiltrating monocytes neither clustered around plaques nor showed Trem2 expression. However, with increasing time in the brain, infiltrating monocytes became plaque associated and also Trem2 positive. Strikingly, however, monocyte repopulation for up to 6 mo did not modify amyloid load in either model, independent of the stage of pathology at the time of repopulation. Our results argue against a long-term role of peripheral monocytes that is sufficiently distinct from microglial function to modify cerebral ß-amyloidosis. Therefore, myeloid replacement by itself is not likely to be effective as a therapeutic approach for AD.
Assuntos
Doença de Alzheimer/terapia , Peptídeos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Células Mieloides/fisiologia , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Animais , Encéfalo/patologia , Modelos Animais de Doenças , Feminino , Masculino , Glicoproteínas de Membrana/análise , Camundongos , Camundongos Endogâmicos C57BL , Monócitos/fisiologia , Receptores Imunológicos/análiseRESUMO
Cerebral ß-amyloidosis is induced by inoculation of Aß seeds into APP transgenic mice, but not into App(-/-) (APP null) mice. We found that brain extracts from APP null mice that had been inoculated with Aß seeds up to 6 months previously still induced ß-amyloidosis in APP transgenic hosts following secondary transmission. Thus, Aß seeds can persist in the brain for months, and they regain propagative and pathogenic activity in the presence of host Aß.