Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Bioinformatics ; 35(14): i596-i604, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31510670

RESUMO

MOTIVATION: MicroRNAs (miRNAs) are important non-coding post-transcriptional regulators that are involved in many biological processes and human diseases. Individual miRNAs may regulate hundreds of genes, giving rise to a complex gene regulatory network in which transcripts carrying miRNA binding sites act as competing endogenous RNAs (ceRNAs). Several methods for the analysis of ceRNA interactions exist, but these do often not adjust for statistical confounders or address the problem that more than one miRNA interacts with a target transcript. RESULTS: We present SPONGE, a method for the fast construction of ceRNA networks. SPONGE uses 'multiple sensitivity correlation', a newly defined measure for which we can estimate a distribution under a null hypothesis. SPONGE can accurately quantify the contribution of multiple miRNAs to a ceRNA interaction with a probabilistic model that addresses previously neglected confounding factors and allows fast P-value calculation, thus outperforming existing approaches. We applied SPONGE to paired miRNA and gene expression data from The Cancer Genome Atlas for studying global effects of miRNA-mediated cross-talk. Our results highlight already established and novel protein-coding and non-coding ceRNAs which could serve as biomarkers in cancer. AVAILABILITY AND IMPLEMENTATION: SPONGE is available as an R/Bioconductor package (doi: 10.18129/B9.bioc.SPONGE). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Neoplasias , RNA/genética , Redes Reguladoras de Genes , Humanos
2.
Nucleic Acids Res ; 45(1): 54-66, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-27899623

RESUMO

The binding and contribution of transcription factors (TF) to cell specific gene expression is often deduced from open-chromatin measurements to avoid costly TF ChIP-seq assays. Thus, it is important to develop computational methods for accurate TF binding prediction in open-chromatin regions (OCRs). Here, we report a novel segmentation-based method, TEPIC, to predict TF binding by combining sets of OCRs with position weight matrices. TEPIC can be applied to various open-chromatin data, e.g. DNaseI-seq and NOMe-seq. Additionally, Histone-Marks (HMs) can be used to identify candidate TF binding sites. TEPIC computes TF affinities and uses open-chromatin/HM signal intensity as quantitative measures of TF binding strength. Using machine learning, we find low affinity binding sites to improve our ability to explain gene expression variability compared to the standard presence/absence classification of binding sites. Further, we show that both footprints and peaks capture essential TF binding events and lead to a good prediction performance. In our application, gene-based scores computed by TEPIC with one open-chromatin assay nearly reach the quality of several TF ChIP-seq data sets. Finally, these scores correctly predict known transcriptional regulators as illustrated by the application to novel DNaseI-seq and NOMe-seq data for primary human hepatocytes and CD4+ T-cells, respectively.


Assuntos
Cromatina/metabolismo , DNA/genética , Regulação da Expressão Gênica , Histonas/genética , Aprendizado de Máquina , Fatores de Transcrição/genética , Algoritmos , Sítios de Ligação , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Cromatina/química , Montagem e Desmontagem da Cromatina , DNA/metabolismo , Células Hep G2 , Hepatócitos/citologia , Hepatócitos/metabolismo , Histonas/metabolismo , Células-Tronco Embrionárias Humanas/citologia , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Células K562 , Especificidade de Órgãos , Cultura Primária de Células , Análise de Componente Principal , Ligação Proteica , Fatores de Transcrição/metabolismo
3.
Biochim Biophys Acta Mol Basis Dis ; 1864(10): 3099-3108, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29859241

RESUMO

Adult expression of IMP2 is often associated with several types of disease and cancer. The RNA binding protein IMP2 binds and stabilizes the IGF2 mRNA as well as hundreds of other transcripts during development. To gain insight into the molecular action of IMP2 and its contribution to disease in context of adult cellular metabolism, we analyze transgenic overexpression of IMP2 in mouse livers, which has been shown to induce a steatosis-like phenotype and enhanced risk to develop hepatocellular carcinoma (HCC). Our data show up-regulation of several HCC marker genes and miRNAs (miR438-3p and miR151-5p). To characterize the impact of miRNAs to their targets, integrative analysis of transcriptome-and miRNAome-dynamics in combination with IMP2 target prediction was carried out. Our analyses show that targets of expressed miRNAs become accumulated in the case that these transcripts have positive IMP2 binding prediction. Therefore, our data indicates that overexpression of IMP2 alters the regulatory capacity of many miRNAs and we conclude that IMP2 competes with miRNAs for binding sites on thousands of transcripts. As a result, our data implicates that overexpression of IMP2 has distinct effects to the regulatory capacity of miRNAs with yet unknown consequences for translational efficiency.


Assuntos
Fígado Gorduroso/genética , Perfilação da Expressão Gênica/métodos , Redes Reguladoras de Genes , Proteínas de Ligação a RNA/genética , Animais , Sítios de Ligação , Fígado Gorduroso/metabolismo , Regulação Neoplásica da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Camundongos , Camundongos Transgênicos , Proteínas de Ligação a RNA/metabolismo , Análise de Sequência de DNA/métodos , Regulação para Cima
4.
DNA Res ; 22(4): 293-305, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26231545

RESUMO

Phenotypic variation of a single genotype is achieved by alterations in gene expression patterns. Regulation of such alterations depends on their time scale, where short-time adaptations differ from permanently established gene expression patterns maintained by epigenetic mechanisms. In the ciliate Paramecium, serotypes were described for an epigenetically controlled gene expression pattern of an individual multigene family. Paradoxically, individual serotypes can be triggered in Paramecium by alternating environments but are then stabilized by epigenetic mechanisms, thus raising the question to which extend their expression follows environmental stimuli. To characterize environmental adaptation in the context of epigenetically controlled serotype expression, we used RNA-seq to characterize transcriptomes of serotype pure cultures. The resulting vegetative transcriptome resource is first analysed for genes involved in the adaptive response to the altered environment. Secondly, we identified groups of genes that do not follow the adaptive response but show co-regulation with the epigenetically controlled serotype system, suggesting that their gene expression pattern becomes manifested by similar mechanisms. In our experimental set-up, serotype expression and the entire group of co-regulated genes were stable among environmental changes and only heat-shock genes altered expression of these gene groups. The data suggest that the maintenance of these gene expression patterns in a lineage represents epigenetically controlled robustness counteracting short-time adaptation processes.


Assuntos
Epigênese Genética , Regulação da Expressão Gênica , Paramecium tetraurellia/genética , Sorogrupo , Transcriptoma , Adaptação Biológica/genética , Antígenos de Protozoários/genética , Análise por Conglomerados , Temperatura Baixa , DNA/metabolismo , Perfilação da Expressão Gênica , Resposta ao Choque Térmico/genética , Família Multigênica , Paramecium tetraurellia/classificação , Paramecium tetraurellia/metabolismo , Biossíntese de Proteínas , Inanição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA