Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Org Chem ; 88(1): 384-394, 2023 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-36516991

RESUMO

The development of a convergent route to the NLRP3 (nucleotide-binding domain and leucine-rich repeat-containing protein 3) agonist BMS-986299 is reported. The synthesis relies on a key Miyaura borylation and a tandem Suzuki-Miyaura coupling between an iodoimidazole and an o-aminochloroarene, followed by acid-mediated cyclization to afford the aminoquinoline core. The subsequent Boc cleavage and regioselective acylation afford the target compound. Two routes to the iodoimidazole intermediate are presented, along with the synthesis of the o-aminochloroarene via Negishi coupling. The convergent six-step route leads to an 80% reduction in process mass intensity compared to the linear enabling synthesis.


Assuntos
Imidazóis , Proteína 3 que Contém Domínio de Pirina da Família NLR , Ciclização , Acilação
2.
J Org Chem ; 85(16): 10334-10349, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32662636

RESUMO

Despite recent advancements in metal-catalyzed borylations of aryl (pseudo)halides, there is a continuing need to develop robust methods to access both early-stage and late-stage organoboron intermediates amendable for further functionalization. In particular, the development of general catalytic systems that operate under mild reaction conditions across a broad range of electrophilic partners remains elusive. Herein, we report the development and application of three catalytic systems (two Pd-based and one Ni-based) for the direct borylation of aryl (pseudo)halides using tetrahydroxydiboron (B2(OH)4). For the Pd-based catalyst systems, we have identified general reaction conditions that allow for the sequestration of halide ions through simple precipitation that results in catalyst loadings as low as 0.01 mol % (100 ppm) and reaction temperatures as low as room temperature. We also describe a complementary Ni-based catalyst system that employs simple unligated Ni(II) salts as an inexpensive alternative to the Pd-based systems for the borylation of aryl (pseudo)halides. Extrapolation of all three systems to a one-pot tandem borylation/Suzuki-Miyaura cross-coupling is also demonstrated on advanced intermediates and drug substances.

3.
J Org Chem ; 83(23): 14245-14261, 2018 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-30412670

RESUMO

The identification of Yb(OTf)3 through a multivariable high-throughput experimentation strategy has enabled a unified protocol for the direct conversion of enantioenriched N-acyloxazolidinones to the corresponding chiral esters, amides, and carboxylic acids. This straightforward and catalytic method has shown remarkable chemoselectivity for substitution at the acyclic N-acyl carbonyl for a diverse array of N-acyloxazolidinone substrates. The ionic radius of the Lewis acid catalyst was demonstrated as a key driver of catalyst performance that led to the identification of a robust and scalable esterification of a pharmaceutical intermediate using catalytic Y(OTf)3.

4.
Org Lett ; 23(9): 3233-3236, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33630601

RESUMO

A simple metal-free method has been developed for the reductive N-alkylation of indoles employing aldehydes as the alkylating agent and inexpensive Et3SiH as the reductant. A wide range of aromatic and aliphatic aldehydes are viable substrates along with a variety of substituted indoles. In addition, the method was applied to a one-pot sequential 1,3-alkylation of a substituted indole and successfully demonstrated on a 100 mmol scale.

5.
J Med Chem ; 53(9): 3814-30, 2010 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-20405922

RESUMO

Leukocyte function-associated antigen-1 (LFA-1), also known as CD11a/CD18 or alpha(L)beta(2), belongs to the beta(2) integrin subfamily and is constitutively expressed on all leukocytes. The major ligands of LFA-1 include three intercellular adhesion molecules 1, 2, and 3 (ICAM 1, 2, and 3). The interactions between LFA-1 and the ICAMs are critical for cell adhesion, and preclinical animal studies and clinical data from the humanized anti-LFA-1 antibody efalizumab have provided proof-of-concept for LFA-1 as an immunological target. This article will detail the structure-activity relationships (SAR) leading to a novel second generation series of highly potent spirocyclic hydantoin antagonists of LFA-1. With significantly enhanced in vitro and ex vivo potency relative to our first clinical compound (1), as well as demonstrated in vivo activity and an acceptable pharmacokinetic and safety profile, 6-((5S,9R)-9-(4-cyanophenyl)-3-(3,5-dichlorophenyl)-1-methyl-2,4-dioxo-1,3,7-triazaspiro-[4.4]nonan-7-yl)nicotinic acid (2e) was selected to advance into clinical trials.


Assuntos
Hidantoínas/farmacocinética , Fatores Imunológicos/química , Antígeno-1 Associado à Função Linfocitária/efeitos dos fármacos , Ácidos Nicotínicos/farmacocinética , Humanos , Hidantoínas/farmacologia , Antígeno-1 Associado à Função Linfocitária/química , Antígeno-1 Associado à Função Linfocitária/imunologia , Ácidos Nicotínicos/toxicidade , Relação Estrutura-Atividade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA