RESUMO
Cavity quantum electrodynamics has been studied as a potential approach to modify free charge carrier generation in donor-acceptor heterojunctions because of the delocalization and controllable energy level properties of hybridized light-matter states known as polaritons. However, in many experimental systems, cavity coupling decreases charge separation. Here, we theoretically study the quantum dynamics of a coherent and dissipative donor-acceptor cavity system, to investigate the dynamical mechanism and further discover the conditions under which polaritons may enhance free charge carrier generation. We use open quantum system methods based on single-pulse pumping to find that polaritons have the potential to connect excitonic states and charge separated states, further enhancing free charge generation on an ultrafast timescale of several hundred femtoseconds. The mechanism involves polaritons with optimal energy levels that allow the exciton to overcome the high Coulomb barrier induced by electron-hole attraction. Moreover, we propose that a second-hybridization between a polariton state and dark states with similar energy enables the formation of the hybrid charge separated states that are optically active. These two mechanisms lead to a maximum of 50% enhancement of free charge carrier generation on a short timescale. However, our simulation reveals that on the longer timescale of picoseconds, internal conversion and cavity loss dominate and suppress free charge carrier generation, reproducing the experimental results. Thus, our work shows that polaritons can affect the charge separation mechanism and promote free charge carrier generation efficiency, but predominantly on a short timescale after photoexcitation.
RESUMO
Enhanced delocalization is beneficial for absorbing molecules in organic solar cells, and in particular bilayer devices, where excitons face small diffusion lengths as a barrier to reaching the charge-generating donor-acceptor interface. As hybrid light-matter states, polaritons offer exceptional delocalization which could be used to improve the efficiency of bilayer organic photovoltaics. Polariton delocalization can aid in delivering excitons to the donor-acceptor interface, but the subsequent charge transfer event must compete with the fast decay of the polariton. To evaluate the viability of polaritons as tools to improve bilayer organic solar cells, we studied the decay of the lower polariton in three cavity systems: a donor only, a donor-acceptor bilayer, and a donor-acceptor blend. Using several spectroscopic techniques, we identified an additional decay pathway through charge transfer for the polariton in the bilayer cavity, demonstrating charge transfer from the polariton is fast enough to outcompete the decay to the ground state.
RESUMO
The main result is that the long-range phase coherence of the polariton states formed by strong coupling between a photon mode in a cavity and an ensemble of molecules leads to exceptionally low entropy of the upper and lower polariton states, starkly contrasting with the dark states. That result means that spectroscopy does not correctly order the free energy of the excited states because there is a significant entropic contribution to the free energy, which turns out to comparable to the electronic energy gap between the lower polariton state and the dark-state manifold. The reordered states, according to their free energy, is important to predict the potential of polariton states for reactivity, to predict spontaneous photophysical dynamics, or to understand their decoherence. The entropic contribution adds to the polariton electronic gap, rendering states surprisingly more reactive than anticipated from the input excitation energy. This apparently "additional" reactivity, evident from the thermodynamics, suggests how the low entropy of highly coherent states can be exploited as a resource.
RESUMO
Strong light-matter coupling is emerging as a fascinating way to tune optical properties and modify the photophysics of molecular systems. In this work, we studied a molecular chromophore under strong coupling with the optical mode of a Fabry-Perot cavity resonant to the first electronic absorption band. Using femtosecond pump-probe spectroscopy, we investigated the transient response of the cavity-coupled molecules upon photoexcitation resonant to the upper and lower polaritons. We identified an excited state absorption from upper and lower polaritons to a state at the energy of the second cavity mode. Quantum mechanical calculations of the many-molecule energy structure of cavity polaritons suggest assignment of this state as a two-particle polaritonic state with optically allowed transitions from the upper and lower polaritons. We provide new physical insight into the role of two-particle polaritonic states in explaining transient signatures in hybrid light-matter coupling systems consistent with analogous many-body systems.