RESUMO
Epigenetic alterations are a key hallmark of aging but have been limitedly explored in tissues. Here, using naturally aged murine liver as a model and extending to other quiescent tissues, we find that aging is driven by temporal chromatin alterations that promote a refractory cellular state and compromise cellular identity. Using an integrated multi-omics approach and the first direct visualization of aged chromatin, we find that globally, old cells show H3K27me3-driven broad heterochromatinization and transcriptional suppression. At the local level, site-specific loss of H3K27me3 over promoters of genes encoding developmental transcription factors leads to expression of otherwise non-hepatocyte markers. Interestingly, liver regeneration reverses H3K27me3 patterns and rejuvenates multiple molecular and physiological aspects of the aged liver.
Assuntos
Cromatina , Histonas , Camundongos , Animais , Cromatina/genética , Histonas/genética , Histonas/metabolismo , Epigênese Genética , Envelhecimento/genética , Fatores de Transcrição/metabolismoRESUMO
Activity-dependent changes in neuronal function require coordinated regulation of the protein synthesis and protein degradation machinery to maintain protein homeostasis, critical for proper neuronal function. However, the biochemical evidence for this balance and coordination is largely lacking. Leveraging our recent discovery of a neuronal-specific 20S membrane proteasome complex (NMP), we began exploring how neuronal activity regulates its function. Here, we found that the NMP degrades exclusively a large fraction of ribosome-associated nascent polypeptides that are being newly synthesized during neuronal stimulation. Using deep-coverage and global mass spectrometry, we identified the nascent protein substrates of the NMP, which included products encoding immediate-early genes, such as c-Fos and Npas4. Intriguingly, we found that turnover of nascent polypeptides and not full-length proteins through the NMP occurred independent of canonical ubiquitylation pathways. We propose that these findings generally define a neuronal activity-induced protein homeostasis program of coordinated protein synthesis and degradation through the NMP.
Assuntos
Membrana Celular/enzimologia , Neurônios/enzimologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteólise , Animais , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Camundongos , Complexo de Endopeptidases do Proteassoma/genética , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismoRESUMO
Senescent cells are beneficial for repairing acute tissue damage, but they are harmful when they accumulate in tissues, as occurs with advancing age. Senescence-associated extracellular vesicles (S-EVs) can mediate cell-to-cell communication and export intracellular content to the microenvironment of aging tissues. Here, we studied the uptake of EVs from senescent cells (S-EVs) and proliferating cells (P-EVs) and found that P-EVs were readily taken up by proliferating cells (fibroblasts and cervical cancer cells) while S-EVs were not. We thus investigated the surface proteome (surfaceome) of P-EVs relative to S-EVs derived from cells that had reached senescence via replicative exhaustion, exposure to ionizing radiation, or treatment with etoposide. We found that relative to P-EVs, S-EVs from all senescence models were enriched in proteins DPP4, ANXA1, ANXA6, S10AB, AT1A1, and EPHB2. Among them, DPP4 was found to selectively prevent uptake by proliferating cells, as ectopic overexpression of DPP4 in HeLa cells rendered DPP4-expressing EVs that were no longer taken up by other proliferating cells. We propose that DPP4 on the surface of S-EVs makes these EVs refractory to internalization by proliferating cells, advancing our knowledge of the impact of senescent cells in aging-associated processes.
Assuntos
Senescência Celular , Vesículas Extracelulares , Humanos , Dipeptidil Peptidase 4/genética , Dipeptidil Peptidase 4/metabolismo , Células HeLa , Vesículas Extracelulares/metabolismo , EnvelhecimentoRESUMO
C1q/TNF-related protein 1 (CTRP1) is an endocrine factor with metabolic, cardiovascular, and renal functions. We previously showed that aged Ctrp1-knockout (KO) mice fed a control low-fat diet develop renal hypertrophy and dysfunction. Since aging and obesity adversely affect various organ systems, we hypothesized that aging, in combination with obesity induced by chronic high-fat feeding, would further exacerbate renal dysfunction in CTRP1-deficient animals. To test this, we fed wild-type and Ctrp1-KO mice a high-fat diet for 8 mo or longer. Contrary to our expectation, no differences were observed in blood pressure, heart function, or vascular stiffness between genotypes. Loss of CTRP1, however, resulted in an approximately twofold renal enlargement (relative to body weight), â¼60% increase in urinary total protein content, and elevated pH, and changes in renal gene expression affecting metabolism, signaling, transcription, cell adhesion, solute and metabolite transport, and inflammation. Assessment of glomerular integrity, the extent of podocyte foot process effacement, as well as renal response to water restriction and salt loading did not reveal significant differences between genotypes. Interestingly, blood platelet, white blood cell, neutrophil, lymphocyte, and eosinophil counts were significantly elevated, whereas mean corpuscular volume and hemoglobin were reduced in Ctrp1-KO mice. Cytokine profiling revealed increased circulating levels of CCL17 and TIMP-1 in KO mice. Compared with our previous study, current data suggest that chronic high-fat feeding affects renal phenotypes differently than similarly aged mice fed a control low-fat diet, highlighting a diet-dependent contribution of CTRP1 deficiency to age-related changes in renal structure and function.
Assuntos
Adipocinas/deficiência , Envelhecimento/metabolismo , Dieta Hiperlipídica/efeitos adversos , Nefropatias/etiologia , Rim/metabolismo , Obesidade/etiologia , Adipocinas/genética , Fatores Etários , Envelhecimento/genética , Envelhecimento/patologia , Animais , Quimiocina CCL17/sangue , Feminino , Regulação da Expressão Gênica , Genótipo , Hipertrofia , Rim/ultraestrutura , Nefropatias/genética , Nefropatias/metabolismo , Nefropatias/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Inibidor Tecidual de Metaloproteinase-1/sangueRESUMO
In mature neurons AMPA receptors cluster at excitatory synapses primarily on dendritic spines, whereas GABAA receptors cluster at inhibitory synapses mainly on the soma and dendritic shafts. The molecular mechanisms underlying the precise sorting of these receptors remain unclear. By directly studying the constitutive exocytic vesicles of AMPA and GABAA receptors in vitro and in vivo, we demonstrate that they are initially sorted into different vesicles in the Golgi apparatus and inserted into distinct domains of the plasma membrane. These insertions are dependent on distinct Rab GTPases and SNARE complexes. The insertion of AMPA receptors requires SNAP25-syntaxin1A/B-VAMP2 complexes, whereas insertion of GABAA receptors relies on SNAP23-syntaxin1A/B-VAMP2 complexes. These SNARE complexes affect surface targeting of AMPA or GABAA receptors and synaptic transmission. Our studies reveal vesicular sorting mechanisms controlling the constitutive exocytosis of AMPA and GABAA receptors, which are critical for the regulation of excitatory and inhibitory responses in neurons.
Assuntos
Receptores de AMPA/metabolismo , Receptores de GABA-A/metabolismo , Animais , Membrana Celular/metabolismo , Células Cultivadas , Exocitose , Complexo de Golgi/metabolismo , Células Piramidais/metabolismo , Ratos , Sintaxina 1/metabolismo , Proteína 2 Associada à Membrana da Vesícula/metabolismoRESUMO
Whether host DNA receptors have any capacity to distinguish self from nonself at the molecular level is an outstanding question in the innate immunity of mammals. Here, by using quantitative assays and electron microscopy, we show that cooperatively assembling into filaments on dsDNA may serve as an integral mechanism by which human IFN-inducible protein-16 (IFI16) engages foreign DNA. IFI16 is essential for defense against a number of different pathogens, and its aberrant activity is also implicated in several autoimmune disorders, such as Sjögren syndrome. IFI16 cooperatively binds dsDNA in a length-dependent manner and clusters into distinct protein filaments even in the presence of excess dsDNA. Consequently, the assembled IFI16â dsDNA oligomers are clearly different from the conventional noninteracting entities resembling beads on a string. The isolated DNA-binding domains of IFI16 engage dsDNA without forming filaments and with weak affinity, and it is the non-DNA-binding pyrin domain of IFI16 that drives the cooperative filament assembly. The surface residues on the pyrin domain that mediate the cooperative DNA binding are conserved, suggesting that related receptors use a common mechanism. These results suggest that IFI16 clusters into signaling foci in a switch-like manner and that it is capable of using the size of naked dsDNA as a molecular ruler to distinguish self from nonself.
Assuntos
DNA/química , Proteínas Nucleares/química , Fosfoproteínas/química , Sequência de Aminoácidos , Ligação Competitiva , Núcleo Celular/metabolismo , Reagentes de Ligações Cruzadas/química , Humanos , Imunidade Inata , Inflamação , Microscopia Eletrônica , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Transdução de SinaisRESUMO
Cbl-associated protein (CAP) localizes to focal adhesions and associates with numerous cytoskeletal proteins; however, its physiological roles remain unknown. Here, we demonstrate that Drosophila CAP regulates the organization of two actin-rich structures in Drosophila: muscle attachment sites (MASs), which connect somatic muscles to the body wall; and scolopale cells, which form an integral component of the fly chordotonal organs and mediate mechanosensation. Drosophila CAP mutants exhibit aberrant junctional invaginations and perturbation of the cytoskeletal organization at the MAS. CAP depletion also results in collapse of scolopale cells within chordotonal organs, leading to deficits in larval vibration sensation and adult hearing. We investigate the roles of different CAP protein domains in its recruitment to, and function at, various muscle subcellular compartments. Depletion of the CAP-interacting protein Vinculin results in a marked reduction in CAP levels at MASs, and vinculin mutants partially phenocopy Drosophila CAP mutants. These results show that CAP regulates junctional membrane and cytoskeletal organization at the membrane-cytoskeletal interface of stretch-sensitive structures, and they implicate integrin signaling through a CAP/Vinculin protein complex in stretch-sensitive organ assembly and function.
Assuntos
Estruturas Animais/fisiologia , Proteínas do Citoesqueleto/metabolismo , Drosophila/fisiologia , Regulação da Expressão Gênica no Desenvolvimento , Citoesqueleto de Actina/metabolismo , Citoesqueleto de Actina/fisiologia , Sequência de Aminoácidos , Estruturas Animais/metabolismo , Estruturas Animais/ultraestrutura , Animais , Sítios de Ligação , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Junções Célula-Matriz/metabolismo , Junções Célula-Matriz/fisiologia , Proteínas do Citoesqueleto/genética , Drosophila/anatomia & histologia , Drosophila/genética , Drosophila/metabolismo , Fenômenos Eletrofisiológicos , Genoma de Inseto , Transtornos da Audição/genética , Transtornos da Audição/patologia , Transtornos da Audição/veterinária , Integrinas/metabolismo , Larva/genética , Larva/metabolismo , Larva/fisiologia , Larva/ultraestrutura , Mecanotransdução Celular , Microscopia Eletrônica de Transmissão , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Músculos/citologia , Músculos/metabolismo , Mapeamento de Interação de Proteínas , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Talina/genética , Talina/metabolismo , Vibração , Vinculina/genética , Vinculina/metabolismo , Domínios de Homologia de srcRESUMO
The unfolded protein response (UPR) monitors the folding environment within the endoplasmic reticulum (ER). Accumulation of misfolded proteins within the ER activates the UPR resulting in the execution of adaptive or non-adaptive signaling pathways. α-Synuclein (α-syn) whose accumulation and aggregation define the pathobiology of Parkinson's disease (PD) has been shown to inhibit ER-Golgi transit of COPII vesicles. ATF6, a protective branch of the UPR, is processed via COPII mediated ER-Golgi transit following its activation via ER stress. Using cellular PD models together with biochemical reconstitution assays, we showed that α-syn inhibited processing of ATF6 directly through physical interactions and indirectly through restricted incorporation into COPII vesicles. Impaired ATF6 signaling was accompanied by decreased ER-associated degradation (ERAD) function and increased pro-apoptotic signaling. The mechanism by which α-syn inhibits ATF6 signaling expands our understanding of the role ER stress and the UPR play in neurodegenerative diseases such as PD.
Assuntos
Fator 6 Ativador da Transcrição/metabolismo , Vesículas Revestidas pelo Complexo de Proteína do Envoltório/metabolismo , Doença de Parkinson/metabolismo , Resposta a Proteínas não Dobradas , alfa-Sinucleína/metabolismo , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Estresse do Retículo Endoplasmático , Degradação Associada com o Retículo Endoplasmático , Humanos , Neurônios/metabolismo , Transdução de Sinais , Substância Negra/metabolismoRESUMO
UNLABELLED: We report that the human cytomegalovirus (HCMV) high-molecular-weight tegument protein (HMWP, pUL48; 253 kDa) and the HMWP-binding protein (hmwBP, pUL47; 110 kDa) can be recovered as a complex from virions disrupted by treatment with 50 mM Tris (pH 7.5), 0.5 M NaCl, 0.5% NP-40, and 10 mM dithiothreitol [DTT]. The subunit ratio of the complex approximates 1:1, with a shape and structure consistent with an elongated heterodimer. The HMWP/hmwBP complex was corroborated by reciprocal coimmunoprecipitation experiments using antipeptide antibodies and lysates from both infected cells and disrupted virus particles. An interaction of the amino end of pUL48 (amino acids [aa] 322 to 754) with the carboxyl end of pUL47 (aa 693 to 982) was identified by fragment coimmunoprecipitation experiments, and a head-to-tail self-interaction of hmwBP was also observed. The deubiquitylating activity of pUL48 is retained in the isolated complex, which cleaves K11, K48, and K63 ubiquitin isopeptide linkages. IMPORTANCE: Human cytomegalovirus (HCMV, or human herpesvirus 5 [HHV-5]) is a large DNA-containing virus that belongs to the betaherpesvirus subfamily and is a clinically important pathogen. Defining the constituent elements of its mature form, their organization within the particle, and the assembly process by which it is produced are fundamental to understanding the mechanisms of herpesvirus infection and developing drugs and vaccines against them. In this study, we report isolating a complex of two large proteins encoded by HCMV open reading frames (ORFs) UL47 and UL48 and identifying the binding domains responsible for their interaction with each other and of pUL47 with itself. Our calculations indicate that the complex is a rod-shaped heterodimer. Additionally, we determined that the ubiquitin-specific protease activity of the ORF UL48 protein was functional in the complex, cleaving K11-, K48-, and K63-linked ubiquitin dimers. This information builds on and extends our understanding of the HCMV tegument protein network that is required to interface the HCMV envelope and capsid.
Assuntos
Citomegalovirus/enzimologia , Multimerização Proteica , Proteases Específicas de Ubiquitina/metabolismo , Proteínas Virais/metabolismo , Vírion/enzimologia , Linhagem Celular , Citomegalovirus/química , Humanos , Imunoprecipitação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Mapeamento de Interação de Proteínas , Subunidades Proteicas/isolamento & purificação , Subunidades Proteicas/metabolismo , Proteases Específicas de Ubiquitina/isolamento & purificação , Proteínas Virais/isolamento & purificação , Vírion/químicaRESUMO
Proteasomes are critical for peripheral nervous system (PNS) function. Here, we investigate mammalian PNS proteasomes and reveal the presence of the neuronal membrane proteasome (NMP). We show that specific inhibition of the NMP on distal nerve fibers innervating the mouse hind paw leads to reduction in mechanical and pain sensitivity. Through investigating PNS NMPs, we demonstrate their presence on the somata and proximal and distal axons of a subset of dorsal root ganglion (DRG) neurons. Single-cell RNA sequencing experiments reveal that the NMP-expressing DRGs are primarily MrgprA3+ and Cysltr2+. NMP inhibition in DRG cultures leads to cell-autonomous and non-cell-autonomous changes in Ca2+ signaling induced by KCl depolarization, αß-meATP, or the pruritogen histamine. Taken together, these data support a model whereby NMPs are expressed on a subset of somatosensory DRGs to modulate signaling between neurons of distinct sensory modalities and indicate the NMP as a potential target for controlling pain.
Assuntos
Gânglios Espinais , Complexo de Endopeptidases do Proteassoma , Células Receptoras Sensoriais , Animais , Células Receptoras Sensoriais/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Gânglios Espinais/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Nociceptividade , Masculino , Membrana Celular/metabolismo , Sinalização do CálcioRESUMO
Huntington disease is a genetic neurodegenerative disorder that arises from an expanded polyglutamine region in the N terminus of the HD gene product, huntingtin. Protein inclusions comprised of N-terminal fragments of mutant huntingtin are a characteristic feature of disease, though are likely to play a protective role rather than a causative one in neurodegeneration. Soluble oligomeric assemblies of huntingtin formed early in the aggregation process are candidate toxic species in HD. In the present study, we established an in vitro system to generate recombinant huntingtin in mammalian cells. Using both denaturing and native gel analysis, we have identified novel oligomeric forms of mammalian-derived expanded huntingtin exon-1 N-terminal fragment. These species are transient and were not previously detected using bacterially expressed exon-1 protein. Importantly, these species are recognized by 3B5H10, an antibody that recognizes a two-stranded hairpin conformation of expanded polyglutamine believed to be associated with a toxic form of huntingtin. Interestingly, comparable oligomeric species were not observed for expanded huntingtin shortstop, a 117-amino acid fragment of huntingtin shown previously in mammalian cell lines and transgenic mice, and here in primary cortical neurons, to be non-toxic. Further, we demonstrate that expanded huntingtin shortstop has a reduced ability to form amyloid-like fibrils characteristic of the aggregation pathway for toxic expanded polyglutamine proteins. Taken together, these data provide a possible candidate toxic species in HD. In addition, these studies demonstrate the fundamental differences in early aggregation events between mutant huntingtin exon-1 and shortstop proteins that may underlie the differences in toxicity.
Assuntos
Éxons/genética , Proteínas do Tecido Nervoso/genética , Expansão das Repetições de Trinucleotídeos/genética , Animais , Western Blotting , Células Cultivadas , Eletroforese em Gel de Poliacrilamida , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Células HEK293 , Humanos , Proteína Huntingtina , Doença de Huntington/genética , Doença de Huntington/metabolismo , Camundongos , Microscopia de Força Atômica , Microscopia Confocal , Microscopia Eletrônica de Transmissão , Mutação , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Peptídeos/genética , Conformação Proteica , Multimerização Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Fatores de TempoRESUMO
Heart tissue possesses complex structural organization on multiple scales, from macro- to nano-, but nanoscale control of cardiac function has not been extensively analyzed. Inspired by ultrastructural analysis of the native tissue, we constructed a scalable, nanotopographically controlled model of myocardium mimicking the in vivo ventricular organization. Guided by nanoscale mechanical cues provided by the underlying hydrogel, the tissue constructs displayed anisotropic action potential propagation and contractility characteristic of the native tissue. Surprisingly, cell geometry, action potential conduction velocity, and the expression of a cell-cell coupling protein were exquisitely sensitive to differences in the substratum nanoscale features of the surrounding extracellular matrix. We propose that controlling cell-material interactions on the nanoscale can stipulate structure and function on the tissue level and yield novel insights into in vivo tissue physiology, while providing materials for tissue repair.
Assuntos
Coração/anatomia & histologia , Miocárdio/ultraestrutura , Animais , Matriz Extracelular/ultraestrutura , Humanos , Hidrogéis , Microscopia Eletrônica de Varredura/métodos , Miócitos Cardíacos/citologia , Miócitos Cardíacos/fisiologia , Miócitos Cardíacos/ultraestrutura , Polietilenoglicóis , Ratos , Engenharia Tecidual/métodosRESUMO
The consequences of aneuploidy have traditionally been studied in cell and animal models in which the extrachromosomal DNA is from the same species. Here, we explore a fundamental question concerning the impact of aneuploidy on systemic metabolism using a non-mosaic transchromosomic mouse model (TcMAC21) carrying a near complete human chromosome 21. Independent of diets and housing temperatures, TcMAC21 mice consume more calories, are hyperactive and hypermetabolic, remain consistently lean and profoundly insulin sensitive, and have a higher body temperature. The hypermetabolism and elevated thermogenesis are due to sarcolipin overexpression in the skeletal muscle, resulting in futile sarco(endo)plasmic reticulum Ca 2+ ATPase (SERCA) activity and energy dissipation. Mitochondrial respiration is also markedly increased in skeletal muscle to meet the high ATP demand created by the futile cycle. This serendipitous discovery provides proof-of-concept that sarcolipin-mediated thermogenesis via uncoupling of the SERCA pump can be harnessed to promote energy expenditure and metabolic health.
RESUMO
The consequences of aneuploidy have traditionally been studied in cell and animal models in which the extrachromosomal DNA is from the same species. Here, we explore a fundamental question concerning the impact of aneuploidy on systemic metabolism using a non-mosaic transchromosomic mouse model (TcMAC21) carrying a near-complete human chromosome 21. Independent of diets and housing temperatures, TcMAC21 mice consume more calories, are hyperactive and hypermetabolic, remain consistently lean and profoundly insulin sensitive, and have a higher body temperature. The hypermetabolism and elevated thermogenesis are likely due to a combination of increased activity level and sarcolipin overexpression in the skeletal muscle, resulting in futile sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) activity and energy dissipation. Mitochondrial respiration is also markedly increased in skeletal muscle to meet the high ATP demand created by the futile cycle and hyperactivity. This serendipitous discovery provides proof-of-concept that sarcolipin-mediated thermogenesis via uncoupling of the SERCA pump can be harnessed to promote energy expenditure and metabolic health.
Assuntos
Músculo Esquelético , Termogênese , Camundongos , Humanos , Animais , Músculo Esquelético/metabolismo , Termogênese/genética , Metabolismo Energético/fisiologia , Proteolipídeos/metabolismo , Citoplasma/metabolismo , Cromossomos Humanos/metabolismo , Cálcio/metabolismoRESUMO
Epigenetic alterations are a key hallmark of aging but have been limitedly explored in tissues. Here, using naturally aged murine liver as a model and extending to other quiescent tissues, we find that aging is driven by temporal chromatin alterations that promote a refractory cellular state and compromise cellular identity. Using an integrated multi-omics approach, and the first direct visualization of aged chromatin we find that globally, old cells show H3K27me3-driven broad heterochromatinization and transcription suppression. At the local level, site-specific loss of H3K27me3 over promoters of genes encoding developmental transcription factors leads to expression of otherwise non-hepatocyte markers. Interestingly, liver regeneration reverses H3K27me3 patterns and rejuvenates multiple molecular and physiological aspects of the aged liver.
RESUMO
BackgroundAntiretroviral therapy (ART) halts HIV-1 replication, decreasing viremia to below the detection limit of clinical assays. However, some individuals experience persistent nonsuppressible viremia (NSV) originating from CD4+ T cell clones carrying infectious proviruses. Defective proviruses represent over 90% of all proviruses persisting during ART and can express viral genes, but whether they can cause NSV and complicate ART management is unknown.MethodsWe undertook an in-depth characterization of proviruses causing NSV in 4 study participants with optimal adherence and no drug resistance. We investigated the impact of the observed defects on 5'-leader RNA properties, virus infectivity, and gene expression. Integration-site specific assays were used to track these proviruses over time and among cell subsets.ResultsClones carrying proviruses with 5'-leader defects can cause persistent NSV up to approximately 103 copies/mL. These proviruses had small, often identical deletions or point mutations involving the major splicing donor (MSD) site and showed partially reduced RNA dimerization and nucleocapsid binding. Nevertheless, they were inducible and produced noninfectious virions containing viral RNA, but lacking envelope.ConclusionThese findings show that proviruses with 5'-leader defects in CD4+ T cell clones can give rise to NSV, affecting clinical care. Sequencing of the 5'-leader can help in understanding failure to completely suppress viremia.FundingOffice of the NIH Director and National Institute of Dental and Craniofacial Research, NIH; Howard Hughes Medical Institute; Johns Hopkins University Center for AIDS Research; National Institute for Allergy and Infectious Diseases (NIAID), NIH, to the PAVE, BEAT-HIV, and DARE Martin Delaney collaboratories.
Assuntos
Infecções por HIV , HIV-1 , Humanos , Provírus/genética , Provírus/metabolismo , HIV-1/genética , HIV-1/metabolismo , Viremia/genética , Infecções por HIV/tratamento farmacológico , Infecções por HIV/genética , Linfócitos T CD4-Positivos , RNA Viral/genética , RNA Viral/metabolismoRESUMO
FYCO1 (FYVE and coiled-coil domain containing 1) is an adaptor protein, expressed ubiquitously and required for microtubule-dependent, plus-end-directed transport of macroautophagic/autophagic vesicles. We have previously shown that loss-of-function mutations in FYCO1 cause cataracts with no other ocular and/or extra-ocular phenotype. Here, we show fyco1 homozygous knockout (fyco1-/-) mice recapitulate the cataract phenotype consistent with a critical role of FYCO1 and autophagy in lens morphogenesis. Transcriptome coupled with proteome and metabolome profiling identified many autophagy-associated genes, proteins, and lipids respectively perturbed in fyco1-/- mice lenses. Flow cytometry of FYCO1 (c.2206C>T) knock-in (KI) human lens epithelial cells revealed a decrease in autophagic flux and autophagic vesicles resulting from the loss of FYCO1. Transmission electron microscopy showed cellular organelles accumulated in FYCO1 (c.2206C>T) KI lens-like organoid structures and in fyco1-/- mice lenses. In summary, our data confirm the loss of FYCO1 function results in a diminished autophagic flux, impaired organelle removal, and cataractogenesis.Abbreviations: CC: congenital cataracts; DE: differentially expressed; ER: endoplasmic reticulum; FYCO1: FYVE and coiled-coil domain containing 1; hESC: human embryonic stem cell; KI: knock-in; OFZ: organelle-free zone; qRT-PCR: quantitative real-time PCR; PE: phosphatidylethanolamine; RNA-Seq: RNA sequencing; SD: standard deviation; sgRNA: single guide RNA; shRNA: shorthairpin RNA; TEM: transmission electron microscopy; WT: wild type.
Assuntos
Catarata , Cristalino , Proteínas Associadas aos Microtúbulos/metabolismo , Animais , Autofagia , Catarata/genética , Catarata/metabolismo , Diferenciação Celular , Retículo Endoplasmático/metabolismo , Humanos , Cristalino/metabolismo , Camundongos , Proteínas Associadas aos Microtúbulos/genética , Fatores de Transcrição/metabolismoRESUMO
Gastrointestinal infection with Shiga toxins producing enterohemorrhagic Escherichia coli causes the spectrum of gastrointestinal and systemic complications, including hemorrhagic colitis and hemolytic uremic syndrome, which is fatal in â¼10% of patients. However, the molecular mechanisms of Stx endocytosis by enterocytes and the toxins cross the intestinal epithelium are largely uncharacterized. We have studied Shiga toxin 1 entry into enterohemorrhagic E. coli-infected intestinal epithelial cells and found that bacteria stimulate Shiga toxin 1 macropinocytosis through actin remodeling. This enterohemorrhagic E. coli-caused macropinocytosis occurs through a nonmuscle myosin II and cell division control 42 (Cdc42)-dependent mechanism. Macropinocytosis of Shiga toxin 1 is followed by its transcytosis to the basolateral environment, a step that is necessary for its systemic spread. Inhibition of Shiga toxin 1 macropinocytosis significantly decreases toxin uptake by intestinal epithelial cells and in this way provides an attractive, antibiotic-independent strategy for prevention of the harmful consequences of enterohemorrhagic E. coli infection.
Assuntos
Escherichia coli Êntero-Hemorrágica , Infecções por Escherichia coli/metabolismo , Mucosa Intestinal/metabolismo , Pinocitose , Toxina Shiga I/metabolismo , Transcitose , Actinas/metabolismo , Linhagem Celular , Colo/metabolismo , Colo/microbiologia , Infecções por Escherichia coli/microbiologia , Humanos , Mucosa Intestinal/microbiologia , Miosina Tipo II/metabolismo , Proteína cdc42 de Ligação ao GTP/metabolismoRESUMO
INTRODUCTION: Contractile networks are fundamental to many cellular functions, particularly cytokinesis and cell motility. Contractile networks depend on myosin-II mechanochemistry to generate sliding force on the actin polymers. However, to be contractile, the networks must also be crosslinked by crosslinking proteins, and to change the shape of the cell, the network must be linked to the plasma membrane. Discerning how this integrated network operates is essential for understanding cytokinesis contractility and shape control. Here, we analyzed the cytoskeletal network that drives furrow ingression in Dictyostelium. RESULTS: We establish that the actin polymers are assembled into a meshwork and that myosin-II does not assemble into a discrete ring in the Dictyostelium cleavage furrow of adherent cells. We show that myosin-II generates regional mechanics by increasing cleavage furrow stiffness and slows furrow ingression during late cytokinesis as compared to myoII nulls. Actin crosslinkers dynacortin and fimbrin similarly slow furrow ingression and contribute to cell mechanics in a myosin-II-dependent manner. By using FRAP, we show that the actin crosslinkers have slower kinetics in the cleavage furrow cortex than in the pole, that their kinetics differ between wild-type and myoII null cells, and that the protein dynamics of each crosslinker correlate with its impact on cortical mechanics. CONCLUSIONS: These observations suggest that myosin-II along with actin crosslinkers establish local cortical tension and elasticity, allowing for contractility independent of a circumferential cytoskeletal array. Furthermore, myosin-II and actin crosslinkers may influence each other as they modulate the dynamics and mechanics of cell-shape change.
Assuntos
Actinas/metabolismo , Citocinese/fisiologia , Dictyostelium/fisiologia , Miosina Tipo II/fisiologia , Animais , Fenômenos BiomecânicosRESUMO
It is unclear why some SARS-CoV-2 patients readily resolve infection while others develop severe disease. By interrogating metabolic programs of immune cells in severe and recovered coronavirus disease 2019 (COVID-19) patients compared with other viral infections, we identify a unique population of T cells. These T cells express increased Voltage-Dependent Anion Channel 1 (VDAC1), accompanied by gene programs and functional characteristics linked to mitochondrial dysfunction and apoptosis. The percentage of these cells increases in elderly patients and correlates with lymphopenia. Importantly, T cell apoptosis is inhibited in vitro by targeting the oligomerization of VDAC1 or blocking caspase activity. We also observe an expansion of myeloid-derived suppressor cells with unique metabolic phenotypes specific to COVID-19, and their presence distinguishes severe from mild disease. Overall, the identification of these metabolic phenotypes provides insight into the dysfunctional immune response in acutely ill COVID-19 patients and provides a means to predict and track disease severity and/or design metabolic therapeutic regimens.