Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Am J Hum Genet ; 100(3): 523-536, 2017 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-28190456

RESUMO

Phosphoinositides are small phospholipids that control diverse cellular downstream signaling events. Their spatial and temporal availability is tightly regulated by a set of specific lipid kinases and phosphatases. Congenital muscular dystrophies are hereditary disorders characterized by hypotonia and weakness from birth with variable eye and central nervous system involvement. In individuals exhibiting congenital muscular dystrophy, early-onset cataracts, and mild intellectual disability but normal cranial magnetic resonance imaging, we identified bi-allelic mutations in INPP5K, encoding inositol polyphosphate-5-phosphatase K. Mutations impaired phosphatase activity toward the phosphoinositide phosphatidylinositol (4,5)-bisphosphate or altered the subcellular localization of INPP5K. Downregulation of INPP5K orthologs in zebrafish embryos disrupted muscle fiber morphology and resulted in abnormal eye development. These data link congenital muscular dystrophies to defective phosphoinositide 5-phosphatase activity that is becoming increasingly recognized for its role in mediating pivotal cellular mechanisms contributing to disease.


Assuntos
Catarata/genética , Disfunção Cognitiva/genética , Distrofia Muscular do Cíngulo dos Membros/genética , Anormalidades Musculoesqueléticas/genética , Monoéster Fosfórico Hidrolases/genética , Adolescente , Adulto , Alelos , Animais , Encéfalo/patologia , Criança , Pré-Escolar , Modelos Animais de Doenças , Regulação para Baixo , Feminino , Estudo de Associação Genômica Ampla , Humanos , Lactente , Deficiência Intelectual/genética , Imageamento por Ressonância Magnética , Masculino , Músculo Esquelético/patologia , Mutação , Linhagem , Adulto Jovem , Peixe-Zebra/embriologia , Peixe-Zebra/genética
2.
Cell Commun Signal ; 18(1): 99, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32576205

RESUMO

BACKGROUND: Aberrant hedgehog (HH) signaling is implicated in the development of various cancer entities such as medulloblastoma. Activation of GLI transcription factors was revealed as the driving force upon pathway activation. Increased phosphorylation of essential effectors such as Smoothened (SMO) and GLI proteins by kinases including Protein Kinase A, Casein Kinase 1, and Glycogen Synthase Kinase 3 ß controls effector activity, stability and processing. However, a deeper and more comprehensive understanding of phosphorylation in the signal transduction remains unclear, particularly during early response processes involved in SMO activation and preceding GLI target gene regulation. METHODS: We applied temporal quantitative phosphoproteomics to reveal phosphorylation dynamics underlying the short-term chemical activation and inhibition of early hedgehog signaling in HH responsive human medulloblastoma cells. Medulloblastoma cells were treated for 5.0 and 15 min with Smoothened Agonist (SAG) to induce and with vismodegib to inhibit the HH pathway. RESULTS: Our phosphoproteomic profiling resulted in the quantification of 7700 and 10,000 phosphosites after 5.0 and 15 min treatment, respectively. The data suggest a central role of phosphorylation in the regulation of ciliary assembly, trafficking, and signal transduction already after 5.0 min treatment. ERK/MAPK signaling, besides Protein Kinase A signaling and mTOR signaling, were differentially regulated after short-term treatment. Activation of Polo-like Kinase 1 and inhibition of Casein Kinase 2A1 were characteristic for vismodegib treatment, while SAG treatment induced Aurora Kinase A activity. Distinctive phosphorylation of central players of HH signaling such as SMO, SUFU, GLI2 and GLI3 was observed only after 15 min treatment. CONCLUSIONS: This study provides evidence that phosphorylation triggered in response to SMO modulation dictates the localization of hedgehog pathway components within the primary cilium and affects the regulation of the SMO-SUFU-GLI axis. The data are relevant for the development of targeted therapies of HH-associated cancers including sonic HH-type medulloblastoma. A deeper understanding of the mechanisms of action of SMO inhibitors such as vismodegib may lead to the development of compounds causing fewer adverse effects and lower frequencies of drug resistance. Video Abstract.


Assuntos
Neoplasias Cerebelares/metabolismo , Proteínas Hedgehog/metabolismo , Meduloblastoma/metabolismo , Proteômica , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Anilidas/farmacologia , Proteína BRCA1/metabolismo , Caseína Quinase II/antagonistas & inibidores , Caseína Quinase II/metabolismo , Proteínas de Ciclo Celular/metabolismo , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Cílios/efeitos dos fármacos , Cílios/metabolismo , Proteínas do Citoesqueleto/metabolismo , Ativação Enzimática/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Meduloblastoma/genética , Meduloblastoma/patologia , Fosfopeptídeos/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteoma/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Piridinas/farmacologia , Transdução de Sinais/efeitos dos fármacos , Especificidade por Substrato/efeitos dos fármacos , Quinase 1 Polo-Like
3.
Blood ; 129(2): e1-e12, 2017 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-28060719

RESUMO

Adenosine diphosphate (ADP) enhances platelet activation by virtually any other stimulant to complete aggregation. It binds specifically to the G-protein-coupled membrane receptors P2Y1 and P2Y12, stimulating intracellular signaling cascades, leading to integrin αIIbß3 activation, a process antagonized by endothelial prostacyclin. P2Y12 inhibitors are among the most successful antiplatelet drugs, however, show remarkable variability in efficacy. We reasoned whether a more detailed molecular understanding of ADP-induced protein phosphorylation could identify (1) critical hubs in platelet signaling toward aggregation and (2) novel molecular targets for antiplatelet treatment strategies. We applied quantitative temporal phosphoproteomics to study ADP-mediated signaling at unprecedented molecular resolution. Furthermore, to mimic the antagonistic efficacy of endothelial-derived prostacyclin, we determined how Iloprost reverses ADP-mediated signaling events. We provide temporal profiles of 4797 phosphopeptides, 608 of which showed significant regulation. Regulated proteins are implicated in well-known activating functions such as degranulation and cytoskeletal reorganization, but also in less well-understood pathways, involving ubiquitin ligases and GTPase exchange factors/GTPase-activating proteins (GEF/GAP). Our data demonstrate that ADP-triggered phosphorylation occurs predominantly within the first 10 seconds, with many short rather than sustained changes. For a set of phosphorylation sites (eg, PDE3ASer312, CALDAG-GEFISer587, ENSASer109), we demonstrate an inverse regulation by ADP and Iloprost, suggesting that these are central modulators of platelet homeostasis. This study demonstrates an extensive spectrum of human platelet protein phosphorylation in response to ADP and Iloprost, which inversely overlap and represent major activating and inhibitory pathways.


Assuntos
Difosfato de Adenosina/metabolismo , Plaquetas/metabolismo , Ativação Plaquetária/fisiologia , Transdução de Sinais/fisiologia , Plaquetas/efeitos dos fármacos , Western Blotting , Humanos , Iloprosta/farmacologia , Fosforilação , Ativação Plaquetária/efeitos dos fármacos , Inibidores da Agregação Plaquetária/farmacologia , Proteômica/métodos
4.
Anal Chem ; 89(24): 13137-13145, 2017 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-29136377

RESUMO

Despite huge efforts to map the human proteome using mass spectrometry the overall sequence coverage achieved to date is still below 50%. Reasons for missing areas of the proteome comprise protease-resistant domains including the lack/excess of enzymatic cleavage sites, nonunique peptide sequences, impaired peptide ionization/separation and low expression levels. To access novel areas of the proteome the beneficial use of enzymes complementary to trypsin, such as Glu-C, Asp-N, Lys-N, Arg-C, LysargiNase has been reported. Here, we present how the broad-specificity protease subtilisin enables mapping of previously hidden areas of the proteome. We systematically evaluated its digestion efficiency and reproducibility and compared it to the gold standard in the field, trypsin. Notably, subtilisin allows reproducible near-complete digestion of cells lysates in 1-5 min. As expected from its broad specificity the generation of overlapping peptide sequences reduces the number of identified proteins compared to trypsin (8363 vs 6807; 1% protein FDR). However, subtilisin considerably improved the coverage of missing and particularly proline-rich areas of the proteome. Along 14 628 high confidence phosphorylation sites identified in total, only 33% were shared between both enzymes, while 37% were exclusive to subtilisin. Notably, 926 of these were not even accessible by additional in silico digestion with either Asp-N, Arg-C, Glu-C, Lys-C, or Lys-N. Thus, subtilisin might be particularly beneficial for system-wide profiling of post-translational modification sites. Finally, we demonstrate that subtilisin can be used for reporter-ion based in-depth quantification, providing a precision comparable to trypsin-despite broad specificity and fast digestion that may increase technical variance.


Assuntos
Proteoma/análise , Subtilisina/metabolismo , Linhagem Celular Tumoral , Células HeLa , Humanos , Espectrometria de Massas , Especificidade por Substrato , Tripsina/metabolismo
5.
Analyst ; 142(22): 4228-4239, 2017 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-29082985

RESUMO

A general difficulty in the miniaturization of free-flow electrophoresis relates to the need to separate electrodes and separation bed compartments. This is usually performed by using membranes, which are either difficult to fabricate and integrate into microfluidic channels, or not stable over time. Here, we propose the use of track-etched polycarbonate membranes. Fabrication of the miniaturized device and integration of the membrane was simple, reproducible and allows for long shelf times. Furthermore, the membranes were resistant to high pressure values (up to 105 Pa), and contributed negligible electrical resistance, allowing setting of electric fields at the separation bed with high efficiency. A second microfluidic device was connected to the microfluidic free-flow electrophoresis chip via tubing, ensured flow stability over time and was used as a chip-to-world interface to a 96 well plate. We demonstrated microfluidic free-flow zone- and field-stacking electrophoresis, and isoelectric focusing proof-of-principle experiments, using fluorescent analytes and monitoring via fluorescence microscopy. Furthermore, the separation of a mixture of 7 proteins was performed in microfluidic free-flow zone electrophoresis mode. Subsequent analysis via protein mass spectrometry of the collected fractions revealed separation of the protein mixture, indicating a wide range of applications in the characterization of proteins and biosimilars.

6.
Analyst ; 141(6): 1888-905, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-26891209

RESUMO

The advent of microfluidics has enabled thorough control of cell manipulation experiments in so called lab on chips. Lab on chips foster the integration of actuation and detection systems, and require minute sample and reagent amounts. Typically employed microfluidic structures have similar dimensions as cells, enabling precise spatial and temporal control of individual cells and their local environments. Several strategies for high spatio-temporal control of cells in microfluidics have been reported in recent years, namely methods relying on careful design of the microfluidic structures (e.g. pinched flow), by integration of actuators (e.g. electrodes or magnets for dielectro-, acousto- and magneto-phoresis), or integrations thereof. This review presents the recent developments of cell experiments in microfluidics divided into two parts: an introduction to spatial control of cells in microchannels followed by special emphasis in the high temporal control of cell-stimulus reaction and quenching. In the end, the present state of the art is discussed in line with future perspectives and challenges for translating these devices into routine applications.


Assuntos
Técnicas Citológicas/métodos , Técnicas Analíticas Microfluídicas/métodos , Animais , Técnicas Citológicas/instrumentação , Humanos , Técnicas Analíticas Microfluídicas/instrumentação , Análise Espaço-Temporal
7.
Biomed Chromatogr ; 27(11): 1413-22, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23703259

RESUMO

A direct chiral LC-UV method was optimized for the determination of salbutamol (SAL) ß2 -agonist in environmental water. Two commercially available columns were evaluated: teicoplanin Chirobiotic-T™ (150 × 2.1 mm i.d., 5 µm) and vancomycin Chirobiotic-V™ (150 × 2.1 mm i.d., 5 µm). Finally, teicoplanin chiral stationary phase was selected for SAL enantiomer resolution. In order to preserve its integrity and maintain the column performance for longer time, the use of additives such as triethylamine (TEA) in the mobile phase was avoided. Experimental design was applied to simultaneously evaluate the influence of several parameters involved in enantiomer separation and to establish the conditions for acceptable resolution and performance in short analysis time. Optimum mobile phase was methanol-20 mM ammonium acetate buffer at pH 4.5 (98:2, v/v). A solid-phase extraction procedure for sample pre-concentration and clean-up allowed the determination of chiral SAL residues in natural water samples spiked at low concentrations in the range 1.0-20 ng mL(-1) . Reproducible recoveries, between 77 and 98%, were obtained and matrix effect was negligible. Injection of sample solutions at low elution strength permitted the SAL enantioresolution in the natural water complex matrix with satisfactory sensitivity and precision.


Assuntos
Agonistas de Receptores Adrenérgicos beta 2/análise , Albuterol/análise , Cromatografia Líquida de Alta Pressão/métodos , Cromatografia de Fase Reversa/métodos , Água Doce/análise , Teicoplanina/química , Poluentes Químicos da Água/análise , Limite de Detecção , Estereoisomerismo
8.
Methods Mol Biol ; 1355: 225-39, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26584929

RESUMO

In recent years, mass spectrometry-based phosphoproteomics has propelled our knowledge about the regulation of cellular pathways. Nevertheless, typically applied bottom-up strategies have several limitations. Trypsin, the preferentially used proteolytic enzyme shows impaired cleavage efficiency in the vicinity of phosphorylation sites. Moreover, depending on the frequency and distribution of tryptic cleavage sites (Arg/Lys), generated peptides can be either too short or too long for confident identification using standard LC-MS approaches. To overcome these limitations, we introduce an alternative and simple approach based on the usage of the nonspecific serine protease subtilisin, which enables a fast and reproducible digestion and provides access to "hidden" areas of the proteome. Thus, in a single LC-MS experiment >1800 phosphopeptides were confidently identified and localized from 125 µg of HeLa digest, compared to >2100 sites after tryptic digestion. While the overlap was less than 20 %, subtilisin allowed the identification of many phosphorylation sites that are theoretically not accessible via tryptic digestion, thus considerably increasing the coverage of the phosphoproteome.


Assuntos
Mapeamento de Peptídeos/métodos , Fosfopeptídeos/análise , Proteômica/métodos , Subtilisina/química , Cromatografia Líquida de Alta Pressão , Cromatografia de Fase Reversa , Biologia Computacional , Bases de Dados de Proteínas , Células HeLa , Humanos , Fosfopeptídeos/química , Fosfopeptídeos/metabolismo , Fosforilação , Processamento de Proteína Pós-Traducional , Proteólise , Extração em Fase Sólida , Subtilisina/metabolismo , Espectrometria de Massas em Tandem , Titânio/química , Tripsina/química , Fluxo de Trabalho
9.
Mol Biosyst ; 11(6): 1487-93, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25800119

RESUMO

Despite continuous improvements phosphoproteomics still faces challenges that are often neglected, e.g. partially poor recovery of phosphopeptide enrichment, assessment of phosphorylation stoichiometry, label-free quantification, poor behavior during chromatography, and general limitations of peptide-centric proteomics. Here we critically discuss current limitations that need consideration in both qualitative and quantitative studies.


Assuntos
Fosfoproteínas , Proteômica , Pesquisa Biomédica , Humanos , Fosfoaminoácidos/análise , Fosfoaminoácidos/química , Fosfopeptídeos/análise , Fosfopeptídeos/química , Fosfoproteínas/análise , Fosfoproteínas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA