Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Nano Lett ; 22(7): 2748-2754, 2022 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-35343692

RESUMO

The transient optical response of plasmonic nanostructures has recently been the focus of extensive research. Accurate prediction of the ultrafast dynamics following excitation of hot electrons by ultrashort laser pulses is of major relevance in a variety of contexts from the study of light harvesting and photocatalytic processes to nonlinear nanophotonics and the all-optical modulation of light. So far, all studies have assumed the correspondence between the temporal evolution of the dynamic optical signal, retrieved by transient absorption spectroscopy, and that of the photoexcited hot electrons, described in terms of their temperature. Here, we show both theoretically and experimentally that this correspondence does not hold under a nonperturbative excitation regime. Our results indicate that the main mechanism responsible for the breaking of the correspondence between electronic and optical dynamics is universal in plasmonics, being dominated by the nonlinear smearing of the Fermi-Dirac occupation probability at high hot-electron temperatures.

2.
Proc Natl Acad Sci U S A ; 116(17): 8161-8166, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30952788

RESUMO

We investigate, with a combination of ultrafast optical spectroscopy and semiclassical modeling, the photothermal properties of various water-soluble nanocrystal assemblies. Broadband pump-probe experiments with ∼100-fs time resolution in the visible and near infrared reveal a complex scenario for their transient optical response that is dictated by their hybrid composition at the nanoscale, comprising metallic (Au) or semiconducting ([Formula: see text]) nanostructures and a matrix of organic ligands. We track the whole chain of energy flow that starts from light absorption by the individual nanocrystals and subsequent excitation of out-of-equilibrium carriers followed by the electron-phonon equilibration, occurring in a few picoseconds, and then by the heat release to the matrix on the 100-ps timescale. Two-dimensional finite-element method electromagnetic simulations of the composite nanostructure and multitemperature modeling of the energy flow dynamics enable us to identify the key mechanism presiding over the light-heat conversion in these kinds of nanomaterials. We demonstrate that hybrid (organic-inorganic) nanocrystal assemblies can operate as efficient nanoheaters by exploiting the high absorption from the individual nanocrystals, enabled by the dilution of the inorganic phase that is followed by a relatively fast heating of the embedding organic matrix, occurring on the 100-ps timescale.

3.
Sensors (Basel) ; 22(24)2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36560364

RESUMO

The conventional approach to optimising plasmonic sensors is typically based entirely on ensuring phase matching between the excitation wave and the surface plasmon supported by the metallic structure. However, this leads to suboptimal performance, even in the simplest sensor configuration based on the Otto geometry. We present a simplified coupled mode theory approach for evaluating and optimizing the sensing properties of plasmonic waveguide refractive index sensors. It only requires the calculation of propagation constants, without the need for calculating mode overlap integrals. We apply our method by evaluating the wavelength-, device length- and refractive index-dependent transmission spectra for an example silicon-on-insulator-based sensor of finite length. This reveals all salient spectral features which are consistent with full-field finite element calculations. This work provides a rapid and convenient framework for designing dielectric-plasmonic sensor prototypes-its applicability to the case of fibre plasmonic sensors is also discussed.

4.
Nano Lett ; 21(3): 1345-1351, 2021 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-33497229

RESUMO

Hot-electron dynamics taking place in nanostructured materials upon irradiation with fs-laser pulses has been the subject of intensive research, leading to the emerging field of ultrafast nanophotonics. However, the most common description of nonlinear interaction with ultrashort laser pulses assumes a homogeneous spatial distribution for the photogenerated carriers. Here we theoretically show that the inhomogeneous evolution of the hot carriers at the nanoscale can disclose unprecedented opportunities for ultrafast diffraction management. In particular, we design a highly symmetric plasmonic metagrating capable of a transient symmetry breaking driven by hot electrons. The subsequent power imbalance between symmetrical diffraction orders is calculated to exceed 20% under moderate (∼2 mJ/cm2) laser fluence. Our theoretical investigation also indicates that the recovery time of the symmetric configuration can be controlled by tuning the geometry of the metaatom, and can be as fast as 2 ps for electrically connected configurations.

5.
Small ; 17(26): e2100050, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34061425

RESUMO

The femtosecond evolution of the electronic temperature of laser-excited gold nanoparticles is measured, by means of ultrafast time-resolved photoemission spectroscopy induced by extreme-ultraviolet radiation pulses. The temperature of the electron gas is deduced by recording and fitting high-resolution photo emission spectra around the Fermi edge of gold nanoparticles providing a direct, unambiguous picture of the ultrafast electron-gas dynamics. These results will be instrumental to the refinement of existing models of femtosecond processes in laterally-confined and bulk condensed-matter systems, and for understanding more deeply the role of hot electrons in technological applications.

6.
Opt Lett ; 46(10): 2453-2456, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33988608

RESUMO

We demonstrate optically tunable control of second-harmonic generation in all-dielectric nanoantennas: by using a control beam that is absorbed by the nanoresonator, we thermo-optically change the refractive index of the radiating element to modulate the amplitude of the second-harmonic signal. For a moderate temperature increase of roughly 40 K, modulation of the efficiency up to 60% is demonstrated; this large tunability of the single meta-atom response paves the way to exciting avenues for reconfigurable homogeneous and heterogeneous metasurfaces.

7.
Nano Lett ; 20(6): 4121-4128, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32401524

RESUMO

Bidirectional nanoantennas are of key relevance for advanced functionalities to be implemented at the nanoscale and, in particular, for color routing in an ultracompact flat-optics configuration. Here we demonstrate a novel approach avoiding complex collective geometries and/or restrictive morphological parameters based on cross-polarized detuned plasmonic nanoantennas in a uniaxial (quasi-1D) bimetallic configuration. The nanofabrication of such a flat-optics system is controlled over a large area (cm2) by a novel self-organized technique exploiting ion-induced nanoscale wrinkling instability on glass templates to engineer tilted bimetallic nanostrip dimers. These nanoantennas feature broadband color routing with superior light scattering directivity figures, which are well described by numerical simulations and turn out to be competitive with the response of lithographic nanoantennas. These results demonstrate that our large-area self-organized metasurfaces can be implemented in real-world applications of flat-optics color routing from telecom photonics to optical nanosensing.

8.
Nano Lett ; 17(12): 7691-7695, 2017 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-29125777

RESUMO

The quest for materials with metal-like properties as alternatives to noble metals is an intense area of research that is set to lead to dramatic improvements in technologies based on plasmonics. Here, we present intermediate band (IB) semiconductor nanocrystals (NCs) as a class of all-dielectric nanomaterials providing quasi-static optical resonances. We show that IB NCs can display a negative permittivity in a broad range of visible wavelengths, enabling a metal-like optical response despite the absence of free carriers in the NC ground state. Using a combination of spectroscopy measurements and ab initio calculations, we hereby provide a theoretical model for both the linear and nonlinear optical properties of chalcopyrite CuFeS2 NCs, as a case study of IB semiconductor nanomaterials. Our results rationalize the high performance of IB nanomaterials as photothermal agents and suggest the use of IB semiconductors as alternatives to noble metals for technologies based on plasmonic materials.

9.
Opt Express ; 24(2): A180-90, 2016 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-26832572

RESUMO

In this work a Raman flow cytometer is presented. It consists of a microfluidic device that takes advantages of the basic principles of Raman spectroscopy and flow cytometry. The microfluidic device integrates calibrated microfluidic channels- where the cells can flow one-by-one -, allowing single cell Raman analysis. The microfluidic channel integrates plasmonic nanodimers in a fluidic trapping region. In this way it is possible to perform Enhanced Raman Spectroscopy on single cell. These allow a label-free analysis, providing information about the biochemical content of membrane and cytoplasm of the each cell. Experiments are performed on red blood cells (RBCs), peripheral blood lymphocytes (PBLs) and myelogenous leukemia tumor cells (K562).


Assuntos
Dimerização , Técnicas Analíticas Microfluídicas/instrumentação , Nanopartículas/química , Análise de Célula Única/instrumentação , Análise Espectral Raman/instrumentação , Humanos , Células K562 , Fenômenos Ópticos
10.
Phys Rev Lett ; 114(9): 090201, 2015 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-25793783

RESUMO

Quantum mechanical decay, Fano interference, and bound states with energy in the continuum are ubiquitous phenomena in different areas of physics. Here we experimentally demonstrate that particle statistics strongly affects quantum mechanical decay in a multiparticle system. By considering propagation of two-photon states in engineered photonic lattices, we simulate quantum decay of two noninteracting particles in a multilevel Fano-Anderson model. Remarkably, when the system sustains a bound state in the continuum, fractional decay is observed for bosonic particles, but not for fermionic ones. Complete decay in the fermionic case arises because of the Pauli exclusion principle, which forbids the bound state to be occupied by the two fermions. Our experiment indicates that particle statistics can tune many-body quantum decay from fractional to complete.

11.
ACS Nano ; 18(29): 18933-18947, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-38990155

RESUMO

Photocatalysis with plasmonic nanostructures has lately emerged as a transformative paradigm to drive and alter chemical reactions using light. At the surface of metallic nanoparticles, photoexcitation results in strong near fields, short-lived high-energy "hot" carriers, and light-induced heating, thus creating a local environment where reactions can occur with enhanced efficiencies. In this context, it is critical to understand how to manipulate the nonequilibrium processes triggered by light, as their ultrafast (femto- to picoseconds) relaxation dynamics compete with the process of energy transfer toward the reactants. Accurate predictions of the plasmon photocatalytic activity can lead to optimized nanophotonic architectures with enhanced selectivity and rates, operating beyond the intrinsic limitations of the steady state. Here, we report on an original modeling approach to quantify, with space, time, and energy resolution, the ultrafast energy exchange from plasmonic hot carriers (HCs) to molecular systems adsorbed on the metal nanoparticle surface while consistently accounting for photothermal bond activation. Our analysis, illustrated for a few typical cases, reveals that the most energetic nonequilibrium carriers (i.e., with energies well far from the Fermi level) may introduce a wavelength-dependence of the reaction rates, and it elucidates on the role of the carriers closer to the Fermi energy and the photothermally heated lattice, suggesting ways to enhance and optimize each contribution. We show that the overall reaction rates can benefit strongly from using pulsed illumination with the optimal pulse width determined by the properties of the system. Taken together, these results contribute to the rational design of nanoreactors for pulsed catalysis, which calls for predictive modeling of the ultrafast HC-hot adsorbate energy transfer.

12.
Nat Commun ; 15(1): 2507, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38509113

RESUMO

Optical communication can be revolutionized by encoding data into the orbital angular momentum of light beams. However, state-of-the-art approaches for dynamic control of complex optical wavefronts are mainly based on liquid crystal spatial light modulators or miniaturized mirrors, which suffer from intrinsically slow (µs-ms) response times. Here, we experimentally realize a hybrid meta-optical system that enables complex control of the wavefront of light with pulse-duration limited dynamics. Specifically, by combining ultrafast polarization switching in a WSe2 monolayer with a dielectric metasurface, we demonstrate second harmonic beam deflection and structuring of orbital angular momentum on the femtosecond timescale. Our results pave the way to robust encoding of information for free space optical links, while reaching response times compatible with real-world telecom applications.

13.
ACS Photonics ; 10(9): 3419-3425, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37743936

RESUMO

We investigate nonlinear THz generation from lithium niobate films and crystals of different thicknesses by optical rectification of near-infrared femtosecond pulses. A comparison between numerical studies and polarization-resolved measurements of the generated THz signal reveals a 2 orders of magnitude enhancement in the nonlinear response compared to optical frequencies. We show that this enhancement is due to optical phonon modes at 4.5 and 7.45 THz and is most pronounced for films thinner than 2 µm where optical-to-THz conversion is not limited by self-absorption. These results shed new light on the employment of thin film lithium niobate platforms for the development of new integrated broadband THz emitters and detectors. This may also open the door for further control (e.g., polarization, directivity, and spectral selectivity) of the process in nanophotonic structures, such as nanowires and metasurfaces, realized in the thin film platform. We illustrate this potential by numerically investigating optical-to-THz conversion driven by localized surface phonon-polariton resonances in sub-wavelength lithium niobate rods.

14.
ACS Photonics ; 10(9): 3291-3301, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37743938

RESUMO

We report a quasi-unitary broadband absorption over the ultraviolet-visible-near-infrared range in spaced high aspect ratio, nanoporous titanium oxynitride nanotubes, an ideal platform for several photothermal applications. We explain such an efficient light-heat conversion in terms of localized field distribution and heat dissipation within the nanopores, whose sparsity can be controlled during fabrication. The extremely large heat dissipation could not be explained in terms of effective medium theories, which are typically used to describe small geometrical features associated with relatively large optical structures. A fabrication-process-inspired numerical model was developed to describe a realistic space-dependent electric permittivity distribution within the nanotubes. The resulting abrupt optical discontinuities favor electromagnetic dissipation in the deep sub-wavelength domains generated and can explain the large broadband absorption measured in samples with different porosities. The potential application of porous titanium oxynitride nanotubes as solar absorbers was explored by photothermal experiments under moderately concentrated white light (1-12 Suns). These findings suggest potential interest in realizing solar-thermal devices based on such simple and scalable metamaterials.

15.
ACS Appl Nano Mater ; 6(7): 6230-6240, 2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37092122

RESUMO

Thin-film organic photovoltaic (OPV) devices represent an attractive alternative to conventional silicon solar cells due to their lightweight, flexibility, and low cost. However, the relatively low optical absorption of the OPV active layers still represents an open issue in view of efficient devices that cannot be addressed by adopting conventional light coupling strategies derived from thick PV absorbers. The light coupling to thin-film solar cells can be boosted by nanostructuring the device interfaces at the subwavelength scale. Here, we demonstrate broadband and omnidirectional photon harvesting in thin-film OPV devices enabled by highly ordered one-dimensional (1D) arrays of nanogrooves. Laser interference lithography, in combination with reactive ion etching (RIE), provides the controlled tailoring of the height and periodicity of the silica grooves, enabling effective tuning of the anti-reflection properties in the active organic layer (PTB7:PCBM). With this strategy, we demonstrate a strong enhancement of the optical absorption, as high as 19% with respect to a flat device, over a broadband visible and near-infrared spectrum. The OPV device supported on these optimized nanogrooved substrates yields a 14% increase in short-circuit current over the corresponding flat device, highlighting the potential of this large-scale light-harvesting strategy in the broader context of thin-film technologies.

16.
Opt Express ; 20(3): 3158-65, 2012 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-22330553

RESUMO

We propose and numerically demonstrate an integrated fiber-coupled launcher for slow surface plasmon-polaritons. The device is based on a novel plasmonic mode-converter providing efficient power transfer from the fast to the slow modes of a metallic nanostripe. Total coupling efficiency with standard single-mode fiber approaching 30% (including ohmic losses) has been numerically predicted for a 25-µm long gold-based device operating at 1.55 µm telecom wavelength.


Assuntos
Tecnologia de Fibra Óptica/instrumentação , Nanopartículas Metálicas/química , Nanopartículas Metálicas/ultraestrutura , Nanotecnologia/instrumentação , Ressonância de Plasmônio de Superfície/instrumentação , Desenho de Equipamento , Análise de Falha de Equipamento , Integração de Sistemas
17.
Opt Lett ; 37(11): 2160-2, 2012 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-22660154

RESUMO

Anyons are nonlocal quasi-particles carrying fractional statistics that interpolate between bosons and fermions. Here we propose a photonic realization of anyons moving on a one-dimensional lattice, which is based on light transport in an engineered square array of optical waveguides with a helically bent axis. Our photonic simulator enables visualization of the nonlocal nature of anyons in Fock space and the persistence of correlated tunneling even in the absence of particle interaction.

18.
Nano Lett ; 11(11): 4711-7, 2011 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-21939261

RESUMO

The optical response of metallic nanostructures after intense excitation with femtosecond-laser pulses has recently attracted increasing attention: such response is dominated by ultrafast electron-phonon coupling and offers the possibility to achieve optical modulation with unprecedented terahertz bandwidth. In addition to noble metal nanoparticles, efforts have been made in recent years to synthesize heavily doped semiconductor nanocrystals so as to achieve a plasmonic behavior with spectrally tunable features. In this work, we studied the dynamics of the localized plasmon resonance exhibited by colloidal Cu(2-x)Se nanocrystals of 13 nm in diameter and with x around 0.15, upon excitation by ultrafast laser pulses via pump-probe experiments in the near-infrared, with ∼200 fs resolution time. The experimental results were interpreted according to the two-temperature model and revealed the existence of strong nonlinearities in the plasmonic absorption due to the much lower carrier density of Cu(2-x)Se compared to noble metals, which led to ultrafast control of the probe signal with modulation depth exceeding 40% in transmission.


Assuntos
Coloides/química , Cobre/química , Modelos Químicos , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Selênio/química , Ressonância de Plasmônio de Superfície/métodos , Simulação por Computador , Luz , Teste de Materiais , Tamanho da Partícula , Espalhamento de Radiação
19.
J Phys Chem C Nanomater Interfaces ; 126(14): 6308-6317, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35449522

RESUMO

Plasmonic nanoparticles are renowned as efficient heaters due to their capability to resonantly absorb and concentrate electromagnetic radiation, trigger excitation of highly energetic (hot) carriers, and locally convert their excess energy into heat via ultrafast nonradiative relaxation processes. Furthermore, in assembly configurations (i.e., suprastructures), collective effects can even enhance the heating performance. Here, we report on the dynamics of photothermal conversion and the related nonlinear optical response from water-soluble nanoeggs consisting of a Au nanocrystal assembly trapped in a water-soluble shell of ferrite nanocrystals (also called colloidosome) of ∼250-300 nm in size. This nanoegg configuration of the plasmonic assembly enables control of the size of the gold suprastructure core by changing the Au concentration in the chemical synthesis. Different metal concentrations are analyzed by means of ultrafast pump-probe spectroscopy and semiclassical modeling of photothermal dynamics from the onset of hot-carrier photogeneration (few picosecond time scale) to the heating of the matrix ligands in the suprastructure core (hundreds of nanoseconds). Results show the possibility to design and tailor the photothermal properties of the nanoeggs by acting on the core size and indicate superior performances (both in terms of peak temperatures and thermalization speed) compared to conventional (unstructured) nanoheaters of comparable size and chemical composition.

20.
Sci Rep ; 12(1): 4590, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35301395

RESUMO

The THz spectrum (spanning from 0.3 to 30 THz) offers the potential of a plethora of applications, ranging from the imaging through non transparent media to wireless-over-fiber communications and THz-photonics. The latter framework would greatly benefit from the development of optical-to-THz wavelength converters. Exploiting Difference Frequency Generation in a nonlinear all dielectric nanoantenna, we propose a compact solution to this problem. By means of a near-infrared pump beam (at [Formula: see text]), the information signal in the optical domain (at [Formula: see text]) is converted to the THz band (at [Formula: see text]). The approach is completely transparent with respect to the modulation format, and can be easily integrated in a metasurface platform for simultaneous frequency and spatial moulding of THz beams.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA