Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Transfus Apher Sci ; 53(2): 153-8, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26549671

RESUMO

Microvesicles (MVs), or microparticles, are a complex, dynamic and functional part of cells. Red blood cell (RBC)-derived MVs are naturally produced in vivo (during normal aging processes or in several diseases) as well as ex vivo during cold storage of RBCs, or in vitro by ATP depletion or treatment with Ca(2+) and calcium ionophore. All these MVs are equivalently classified according to their size and/or surface markers. Nevertheless, their content in proteins can differ and a few differences in terms of lipid raft proteins, notably stomatin and flotillin-2, have been reported. Based on two-dimensional gel electrophoreses, the present study highlights the differences between MVs induced during storage of RBCs (storage-MVs) and MVs stimulated by Ca(2+) entry (Ca-MVs). Upon treatment, Ca-MVs are formed following a clear recruitment of Ca(2+)-binding proteins (sorcin, grancalcin, PDCD6) and particularly annexins (4 and 5). Therefore, it emerges that different molecular pathways are available to produce similar MVs by disturbing the membrane/cytoskeleton interactions. Interestingly, these differences provide non-negligible pieces of information on the parent cells, and the mechanisms and modes of actions involved in the formation of MVs. In addition to biophysical characterization, protein analysis is important to classify these cellular corpuscles and evaluate their potential impacts in diseases or transfusion medicine.


Assuntos
Preservação de Sangue , Cálcio/farmacologia , Membrana Eritrocítica/metabolismo , Trifosfato de Adenosina/metabolismo , Cálcio/metabolismo , Ionóforos de Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Micropartículas Derivadas de Células , Citoesqueleto/metabolismo , Feminino , Humanos , Masculino
2.
Mol Cell Proteomics ; 12(3): 687-99, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23242550

RESUMO

Through protein degradation, the proteasome plays fundamental roles in different cell compartments. Although the composition of the 20S catalytic core particle (CP) has been well documented, little is known about the composition and dynamics of the regulatory complexes that play a crucial role in its activity, or about how they associate with the CP in different cell compartments, different cell lines, and in response to external stimuli. Because of difficulties performing acceptable cell fractionation while maintaining complex integrity, it has been challenging to characterize proteasome complexes by proteomic approaches. Here, we report an integrated protocol, combining a cross-linking procedure on intact cells with cell fractionation, proteasome immuno-purification, and robust label-free quantitative proteomic analysis by mass spectrometry to determine the distribution and dynamics of cellular proteasome complexes in leukemic cells. Activity profiles of proteasomes were correlated fully with the composition of protein complexes and stoichiometry. Moreover, our results suggest that, at the subcellular level, proteasome function is regulated by dynamic interactions between the 20S CP and its regulatory proteins-which modulate proteasome activity, stability, localization, or substrate uptake-rather than by profound changes in 20S CP composition. Proteasome plasticity was observed both in the 20S CP and in its network of interactions following IFNγ stimulation. The fractionation protocol also revealed specific proteolytic activities and structural features of low-abundance microsomal proteasomes from U937 and KG1a cells. These could be linked to their important roles in the endoplasmic reticulum associated degradation pathway in leukemic cells.


Assuntos
Espaço Intracelular/enzimologia , Complexos Multienzimáticos/metabolismo , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteômica/métodos , Western Blotting , Linhagem Celular Tumoral , Reagentes de Ligações Cruzadas/química , Humanos , Interferon gama/farmacologia , Espaço Intracelular/metabolismo , Cinética , Leucemia/metabolismo , Leucemia/patologia , Espectrometria de Massas/métodos , Microscopia Confocal , Microssomos/enzimologia , Microssomos/metabolismo , Complexos Multienzimáticos/química , Complexo de Endopeptidases do Proteassoma/química , Ligação Proteica/efeitos dos fármacos , Subunidades Proteicas/química , Subunidades Proteicas/metabolismo , Especificidade por Substrato , Células U937
3.
Transfusion ; 53(8): 1744-54, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23228139

RESUMO

BACKGROUND: Red blood cell-derived microparticles (RMPs) are small phospholipid vesicles shed from RBCs in blood units, where they accumulate during storage. Because microparticles are bioactive, it could be suggested that RMPs are mediators of posttransfusion complications or, on the contrary, constitute a potential hemostatic agent. STUDY DESIGN AND METHODS: This study was performed to establish the impact on coagulation of RMPs isolated from blood units. Using calibrated automated thrombography, we investigated whether RMPs affect thrombin generation (TG) in plasma. RESULTS: We found that RMPs were not only able to increase TG in plasma in the presence of a low exogenous tissue factor (TF) concentration, but also to initiate TG in plasma in absence of exogenous TF. TG induced by RMPs in the absence of exogenous TF was neither affected by the presence of blocking anti-TF nor by the absence of Factor (F)VII. It was significantly reduced in plasma deficient in FVIII or F IX and abolished in FII-, FV-, FX-, or FXI-deficient plasma. TG was also totally abolished when anti-XI 01A6 was added in the sample. Finally, neither Western blotting, flow cytometry, nor immunogold labeling allowed the detection of traces of TF antigen. In addition, RMPs did not comprise polyphosphate, an important modulator of coagulation. CONCLUSIONS: Taken together, our data show that RMPs have FXI-dependent procoagulant properties and are able to initiate and propagate TG. The anionic surface of RMPs might be the site of FXI-mediated TG amplification and intrinsic tenase and prothrombinase complex assembly.


Assuntos
Preservação de Sangue , Micropartículas Derivadas de Células/fisiologia , Eritrócitos/metabolismo , Plasma/metabolismo , Trombina/metabolismo , Biomarcadores/metabolismo , Testes de Coagulação Sanguínea , Western Blotting , Fator XI/metabolismo , Citometria de Fluxo , Humanos , Imuno-Histoquímica , Tromboplastina/metabolismo
4.
Sci Total Environ ; 879: 162865, 2023 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-36933710

RESUMO

Glycol ethers are solvents used in a plethora of occupational and household products exposing the users to potential toxic effects. Several glycol ethers derived from ethylene glycol induce hematological toxicity, such as anemia in workers. The exposure effects on blood cells of glycol ethers derived from propylene glycol are unknown in humans. The aim of our study was to evaluate blood parameters indicative of red blood cell (RBC) hemolysis and oxidative stress in participants exposed to propylene glycol (propylene glycol monobutyl ether (PGBE) and propylene glycol monomethyl ether (PGME)), two extensively used propylene glycol derivatives worldwide. Seventeen participants were exposed 2 h in a control inhalation exposure chamber to low PGME (35 ppm) and PGBE (15 ppm) air concentrations. Blood was regularly collected before, during (15, 30, 60, and 120 min), and 60 min after exposure for RBC and oxidative stress analyses. Urine was also collected for clinical effects related to hemolysis. Under the study conditions, our results showed that the blood parameters such as RBCs, hemoglobin concentration, and white blood cells tended to increase in response to PGME and PGBE exposures. These results raise questions about the possible effects in people regularly exposed to higher concentrations, such as workers.


Assuntos
Éteres , Hemólise , Humanos , Éteres/toxicidade , Voluntários Saudáveis , Propilenoglicóis/toxicidade , Propilenoglicol/toxicidade
5.
Blood Transfus ; 21(4): 277-288, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36346887

RESUMO

BACKGROUND: The quality of red blood cells (RBCs) stored in red cell concentrates (RCCs) is influenced by processing, storage and donor characteristics, and can have a clinical impact on transfused patients. To evaluate RBC properties and their potential impact in a transfusion setting, a simple in vitro-transfusional model has been developed. MATERIALS AND METHODS: Transfusion was simulated by mixing a washed RBC pool from two male-derived RCCs stored at 4°C with a pool of 15 male-derived fresh frozen plasma (FFP) units, representing the recipient, at a hematocrit (HCT) of 30% ("control" setting) or 5% (alternative model). The mixtures were incubated at 37°C, 5% of CO2 up to 48 h. Different metabolites, hemolysis and microvesicles (MVs) were quantified at several incubation times and RBC-morphology changes and deformability after incubation. For each model, biological triplicates have been investigated with RCCs at storage days 2 and 43. RESULTS: The 5%-HCT model restored the 2,3-DPG level and maintained the ATP level. Furthermore, glucose consumption and corresponding lactate production were increased in the 5%- vs the 30%-HCT condition. Lower hemolysis was observed with 5%-HCT, but only at day 2. However, morphological analysis by digital holographic microscopy (DHM) revealed a decreased fraction of discocytes at 5% rather than at 30% of HCT at storage day 2 but at day 43, the trend was inverted. Concordantly, RBCs incubated at 5% of HCT were more deformable than at 30% at day 43 (p<0.0001). DISCUSSION: Higher metabolic activity of RBCs in the 5%-HCT condition was promoted by a higher glucose availability and limited cell-waste accumulation. The conditions of the new proposed model thus enabled rejuvenation of RBCs and maintained them in a physiological-close state in contrast to the 30%-HCT model. It may be used as a first approach to evaluate e.g., the impact of donor and recipient characteristics on RBC properties.


Assuntos
Eritrócitos , Hemólise , Humanos , Masculino , Hematócrito , Transfusão de Sangue , Preservação de Sangue , Glucose/farmacologia
6.
Transfus Med Hemother ; 39(5): 342-7, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23801926

RESUMO

SUMMARY: Microparticles are small phospholipid vesicles of less than 1 µm released into the blood flow by various types of cells such as endothelial, platelet, white or red blood cells. They are involved in many biological and physiological processes including hemostasis. In addition, an elevated number of microparticles in the blood is observed in various pathological situations. In the context of transfusion, erythrocyte-derived microparticles are found in red blood cell concentrates. Their role is not elucidated, and they are considered as a type of storage lesion. The purpose of this review is to present recent data showing that erythrocyte-derived microparticles most likely play a role in transfusion medicine and could cause transfusion complications.

7.
Int J Mol Sci ; 11(11): 4601-17, 2010 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-21151459

RESUMO

Millions of blood products are transfused every year; many lives are thus directly concerned by transfusion. The three main labile blood products used in transfusion are erythrocyte concentrates, platelet concentrates and fresh frozen plasma. Each of these products has to be stored according to its particular components. However, during storage, modifications or degradation of those components may occur, and are known as storage lesions. Thus, biomarker discovery of in vivo blood aging as well as in vitro labile blood products storage lesions is of high interest for the transfusion medicine community. Pre-analytical issues are of major importance in analyzing the various blood products during storage conditions as well as according to various protocols that are currently used in blood banks for their preparations. This paper will review key elements that have to be taken into account in the context of proteomic-based biomarker discovery applied to blood banking.


Assuntos
Análise Química do Sangue/métodos , Preservação de Sangue/métodos , Coleta de Amostras Sanguíneas/métodos , Proteômica/métodos , Biomarcadores/sangue , Humanos
8.
Front Physiol ; 9: 421, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29780325

RESUMO

The storage of erythrocyte concentrates (ECs) induces lesions that notably affect metabolism, protein activity, deformability of red blood cells (RBCs), as well as the release of oxygen. Band 3 is one of the proteins affected during the ex vivo aging of RBCs. This membrane protein is an anion transporter, an anchor site for the cytoskeleton and other membrane proteins as well as a binding site for glycolytic enzymes and bears blood group antigens. In the present study, band 3 complexes were isolated from RBCs stored for 7 and 42 days in average (n = 3), as well as from microvesicles (n = 3). After extraction of membrane proteins with a deoxycholate containing buffer, band 3 complexes were co-immunoprecipitated on magnetic beads coated with two anti-band 3 antibodies. Both total membrane protein extracts and eluates (containing band 3 complexes) were separated on SDS-PAGE and analyzed by bottom-up proteomics. It revealed that three proteins were present or absent in band 3 complexes stemming from long-stored or short-stored ECs, respectively, whereas the membrane protein contents remained equivalent. These potential markers for storage-induced RBC aging are adenylosuccinate lyase (ADSL), α-adducin and flotillin-2, and were further analyzed using western blots. ADSL abundance tended to increase during storage in both total membrane protein and band 3 complexes, whereas α-adducin mainly tended to stay onto the membrane extract. Interestingly, flotillin-2 was equivalently present in total membrane proteins whereas it clearly co-immunoprecipitated with band 3 complexes during storage (1.6-fold-change, p = 0.0024). Moreover, flotillin-2 was enriched (almost threefold) in RBCs compared to microvesicles (MVs) (p < 0.001) and the amount found in MVs was associated to band 3 complexes. Different types of band 3 complexes are known to exist in RBCs and further studies will be required to better understand involvement of this protein in microvesiculation during the storage of RBCs.

9.
Proteomics Clin Appl ; 10(3): 257-66, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26548766

RESUMO

PURPOSE: Transfusion of red blood cells (RBCs) is a daily medical procedure. Erythrocyte concentrates (ECs) can be stored up to 56 days at 4 °C in saline additive solution mainly composed of adenine and sugar. Such nonphysiological conditions induce the occurrence of storage lesions, such as alterations of metabolism, protein oxidation, and deterioration of rheological properties. Their accumulation tends to decrease the main EC therapeutic property, that is, the oxygenation capacity. Protein carbonylation is a marker of oxidative stress and aging, and its occurrence during RBC storage was earlier characterized as a time-dependent and cellular compartment dependent modification. EXPERIMENTAL DESIGN: Three ECs from independent donations were followed. The carbolynome was here characterized in soluble and membrane extracts (n-dodecyl ß-D-maltoside-based extraction buffer) of RBCs stored for 6, 27, and 41 days, through biotin hydrazide derivatization, biotin-avidin affinity purification, SDS-PAGE separation, and LC-MS/MS analyses. RESULTS: A total of 142 and 20 proteins were identified as carbonylated in soluble and membrane extracts, respectively. Particularly, a time-dependent evolution of 26.8% of the soluble carbonylome was observed. CONCLUSIONS AND CLINICAL RELEVANCE: Affected cellular mechanisms involve antioxidant defenses, metabolism pathways, and proteasomal degradation. To better store RBCs those functions have to be preserved, which opens new routes of investigation in transfusion medicine.


Assuntos
Bancos de Sangue , Proteínas Sanguíneas/análise , Eritrócitos/química , Eritrócitos/citologia , Proteômica , Adulto , Idoso , Biologia Computacional , Feminino , Humanos , Masculino , Carbonilação Proteica , Adulto Jovem
10.
Proteomics Clin Appl ; 10(8): 883-93, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27377365

RESUMO

PURPOSE: Erythrocyte concentrates (ECs) represent the most transfused labile blood products. They are stored at 4°C in additive solutions for up to 56 days. Protein oxidation is a marker of oxidative stress and cysteine residues, whose oxidations are required for physiological cell functions, are highly prone to such modification. EXPERIMENTAL DESIGN: Five ECs from independent donations were followed. Soluble protein extracts were prepared at days 6, 27, and 41, and cysteines were alkylated, reduced, and labeled with infrared dyes. Samples were mixed two by two (day 6 as reference) and analyzed by 2D-DIGE. Detection of labeled cysteines allows quantitative comparison of oxidative status. Spots of interest were analyzed by proteomics. RESULTS: Thirty-two spots containing 43 proteins were classified as increasing, decreasing, or exhibiting a peak of expression during storage. Proteins having catalytic and antioxidant activities were particularly affected during storage, for example, peroxiredoxin-1 and DJ-1 were reversibly oxidized and catalase was irreversibly oxidized. These proteins could be used to evaluate different storage strategies to maintain proper protein function during the overall storage period. CONCLUSIONS AND CLINICAL RELEVANCE: This redox-DIGE approach brings new quantitative data on oxidized proteins in stored red blood cells. As previously reported on carbonylation, the oxidative damages differently affect protein functions.


Assuntos
Preservação de Sangue , Proteínas Sanguíneas/metabolismo , Cisteína/metabolismo , Citosol/metabolismo , Eritrócitos/citologia , Hemoglobinas/isolamento & purificação , Proteômica , Artefatos , Proteínas Sanguíneas/química , Coleta de Amostras Sanguíneas , Eritrócitos/metabolismo , Humanos , Oxirredução , Solubilidade , Compostos de Sulfidrila/metabolismo , Fatores de Tempo
11.
Blood Transfus ; 10 Suppl 2: s39-45, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22890266

RESUMO

BACKGROUND: The storage of blood induces the formation of erythrocytes-derived microparticles. Their pathogenic role in blood transfusion is not known so far, especially the risk to trigger alloantibody production in the recipient. This work aims to study the expression of clinically significant blood group antigens on the surface of red blood cells microparticles. MATERIAL AND METHODS: Red blood cells contained in erythrocyte concentrates were stained with specific antibodies directed against blood group antigens and routinely used in immunohematology practice. After inducing erythrocytes vesiculation with calcium ionophore, the presence of blood group antigens was analysed by flow cytometry. RESULTS: The expression of several blood group antigens from the RH, KEL, JK, FY, MNS, LE and LU systems was detected on erythrocyte microparticles. The presence of M (MNS1), N (MNS2) and s (MNS4) antigens could not be demonstrated by flow cytometry, despite that glycophorin A and B were identified on microparticles using anti-CD235a and anti-MNS3. DISCUSSION: We conclude that blood group antigens are localized on erythrocytes-derived microparticles and probably keep their immunogenicity because of their capacity to bind specific antibody. Selective segregation process during vesiculation or their ability to elicit an immune response in vivo has to be tested by further studies.


Assuntos
Antígenos de Grupos Sanguíneos/análise , Micropartículas Derivadas de Células , Eritrócitos/química , Eritrócitos/diagnóstico por imagem , Citometria de Fluxo , Humanos , Ultrassonografia
12.
J Proteomics ; 76 Spec No.: 316-28, 2012 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-22813878

RESUMO

In the past decades, transfusion medicine has been driven by the quest for increased safety against transfusion-transmitted infections, mainly by better donor selection and by the development of improved serological and nucleic-acid-based screening assays. Recently, pathogen reduction technologies became available and started to be implemented in several countries, with the primary goal to fight against bacterial contamination of blood products, a rare but dramatic event against which there was no definitive measure. Though pathogen reduction technologies represent a quantum leap in transfusion safety, the biomedical efficacy of platelet concentrates (PCs) treated with various pathogen reduction techniques has been recently questioned by clinical studies. Here, a gel-based proteomic analysis of PCs (n=5), Intercept-treated or untreated, from pooled buffy-coat (10 donors per PC) at Days 1, 2 and 8, shows that the Intercept process that is the most widespread pathogen reduction technique to date, has relatively low impact on the proteome of treated platelets: the process induces modifications of DJ-1 protein, glutaredoxin 5, and G(i)alpha 2 protein. As for the impact of storage, chloride intracellular channel protein 4 (CLIC4) and actin increased independently of Intercept treatment during storage. Whereas alteration of the DJ-1 protein and glutaredoxin 5 points out an oxidative stress-associated lesion, modification of G(i)alpha2 directly connects a possible Intercept-associated lesion to haemostatic properties of Intercept-treated platelets. This article is part of a Special Issue entitled: Integrated omics.


Assuntos
Plaquetas/metabolismo , Proteínas Sanguíneas/metabolismo , Furocumarinas/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Proteoma/metabolismo , Proteômica , Esterilização/métodos , Buffy Coat/citologia , Buffy Coat/metabolismo , Buffy Coat/microbiologia , Plaquetas/citologia , Plaquetas/microbiologia , Feminino , Humanos , Masculino , Viabilidade Microbiana/efeitos dos fármacos
13.
J Proteomics ; 76 Spec No.: 181-93, 2012 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-22580360

RESUMO

During blood banking, erythrocytes undergo storage lesions, altering or degrading their metabolism, rheological properties, and protein content. Carbonylation is a hallmark of protein oxidative lesions, thus of red blood cell oxidative stress. In order to improve global erythrocyte protein carbonylation assessment, subcellular fractionation has been established, allowing us to work on four different protein populations, namely soluble hemoglobin, hemoglobin-depleted soluble fraction, integral membrane and cytoskeleton membrane protein fractions. Carbonylation in erythrocyte-derived microparticles has also been investigated. Carbonylated proteins were derivatized with 2,4-dinitrophenylhydrazine (2,4-DNPH) and quantified by western blot analyses. In particular, carbonylation in the cytoskeletal membrane fraction increased remarkably between day 29 and day 43 (P<0.01). Moreover, protein carbonylation within microparticles released during storage showed a two-fold increase along the storage period (P<0.01). As a result, carbonylation of cytoplasmic and membrane protein fractions differs along storage, and the present study allows explaining two distinct steps in global erythrocyte protein carbonylation evolution during blood banking. This article is part of a Special Issue entitled: Integrated omics.


Assuntos
Preservação de Sangue , Micropartículas Derivadas de Células/metabolismo , Eritrócitos/metabolismo , Carbonilação Proteica , Eritrócitos/citologia , Humanos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA