Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Langmuir ; 33(22): 5456-5463, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28489394

RESUMO

Gold nanowires with a mean diameter of 1.7 nm were synthesized by reduction of HAuCl4 in a solution of oleylamine (OY) in hexane. A bilayer of oleylammonium chloride/oleylamine at the surface of the raw nanowires was evidenced by NMR and diffusion ordered spectroscopy (DOSY) experiments. After washing a monolayer of oleylammonium chloride remained at the surface of the nanowires. The oleylammonium chloride layer could be progressively replaced by a phosphine shell as evidenced with NMR and DOSY experiments, which are in good agreement with the adsorption energies given by density functional theory calculations. The nanowires crystallize into hexagonal superlattices with a lattice parameter that can be tailored depending on the ligand shell. Small-angle X-ray scattering showed the following lattice parameters: Au@OY+Cl-(OY) (a = 7.2 nm) > Au@TOPO/OY (a = 6.6 nm) > Au@ OY+Cl- (a = 4.1 nm) > Au@TOP (a = 3.75 nm). This is one of a few examples of surface modification of ultrathin nanowires that does not alter their morphology. Moreover, the nanowires coated with phosphines exhibited long time stability (at the opposite of other ligands like thiols) opening the way to more complex functionalization.

2.
Phys Chem Chem Phys ; 18(26): 17330-4, 2016 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-27314745

RESUMO

The control and understanding of the chemical and physical properties of quantum dots (QDs) demands detailed surface characterization. However, probing the immediate interface between the inorganic core and the ligands is still a major challenge. Here we show that using cross-polarization magic angle spinning (MAS) NMR, unprecedented information can be obtained on the surface ligands of Cd3P2 and InP QDs. The resonances of fragments which are usually challenging to detect like methylene or methyl near the surface, can be observed with our approach. Moreover, ligands such as hydroxyl and ethoxide which have so far never been detected at the surface can be unambiguously identified. This NMR approach is versatile, applicable to any phosphides and highly sensitive since it remains effective for identifying quantities as low as a few percent of surface atoms.

3.
Inorg Chem ; 53(21): 11438-46, 2014 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-25329878

RESUMO

P-H functional transition-metal complexes were synthesized without using hazardous PH3 gas in good yields by photolysis of the transition-metal carbonyl complexes M(CO)(6-x) (M = Cr, W, Fe; x = 0, 1) in tetrahydrofuran followed by reaction with P2(SiMe3)4 and subsequent methanolysis to give the bridging complexes [(CO)(x)M(µ-PH2)]2 (M = Fe, x = 3 (1), M = Cr, x = 4 (2a), M = W, x = 4 (2b)). The photolysis of [(CO)4M(µ-PH2)]2 (M = Cr (2a), M = W (2b)) with P(SiMe3)3 was applied followed by methanolysis to synthesize the PH2 bridging transition-metal binuclear complexes with terminal PH3 groups. The products [(CO)4M(µ-PH2)2M(CO)3(PH3)] (M = Cr (3a), M = W (3b)) and [(CO)4W(µ-PH2)2W(CO)2(PH3)2] (4b) were isolated in moderate yield. Another synthetic approach to this type of compounds is the direct photolysis of the complexes [(CO)3M(PH3)3] (M = Cr (5a), M = W (5b)). The products were comprehensively characterized by (31)P NMR and IR spectroscopy as well as by X-ray structural analysis. Additionally, the relevancy of 2a as single source precursor for the synthesis of stoichiometry-controlled CrP nanoparticles has been demonstrated.

4.
J Am Chem Soc ; 134(48): 19701-8, 2012 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-23131073

RESUMO

Advanced (1)H, (13)C, and (31)P solution- and solid-state NMR studies combined with XPS were used to probe, at the molecular scale, the composition (of the core, the shell, and the interface) and the surface chemistry of InP/ZnS core/shell quantum dots prepared via a non-coordinating solvent strategy. The interface between the mismatched InP and ZnS phases is composed of an amorphous mixed oxide phase incorporating InPO(x) (with x = 3 and predominantly 4), In(2)O(3), and InO(y)(OH)(3-2y) (y = 0, 1). Thanks to the analysis of the underlying reaction mechanisms, we demonstrate that the oxidation of the upper part of the InP core is the consequence of oxidative conditions brought by decarboxylative coupling reactions (ketonization). These reactions occur during both the core preparation and the coating process, but according to different mechanisms.

5.
ACS Nano ; 16(6): 9701-9712, 2022 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-35709384

RESUMO

Photoluminescent color conversion by quantum dots (QDs) makes possible the formation of spectrum-on-demand light sources by combining blue LEDs with the light generated by a specific blend of QDs. Such applications, however, require a near-unity photoluminescence quantum efficiency since self-absorption magnifies disproportionally the impact of photon losses on the overall conversion efficiency. Here, we present a synthesis protocol for forming InP-based QDs with +90% quantum efficiency across the full visible spectrum from blue/cyan to red. The central features of our approach are as follows: (1) the formation of InP core QDs through one-batch-one-size reactions based on aminophosphine as the phosphorus precursor, (2) the introduction of a core/shell/shell InP/Zn(Se,S)/ZnS structure, and (3) the use of specific interfacial treatments, most notably the saturation of the ZnSe surface with zinc acetate prior to ZnS shell growth. Moreover, we adapted the composition of the Zn(Se,S) inner shell to attain the intended emission color while minimizing line broadening induced by the InP/ZnS lattice mismatch. The protocol is established by analysis of the QD composition and structure using multiple techniques, including solid-state nuclear magnetic resonance spectroscopy and Raman spectroscopy, and verified for reproducibility by having different researchers execute the same protocol. The realization of full-spectrum, +90% quantum efficiency will strongly facilitate research into light-matter interaction in general and luminescent color conversion in particular through InP-based QDs.

6.
Nanomaterials (Basel) ; 12(19)2022 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-36234492

RESUMO

II-V semiconductor nanocrystals such as Cd3P2 and Zn3P2 have enormous potential as materials in next-generation optoelectronic devices requiring active optical properties across the visible and infrared range. To date, this potential has been unfulfilled due to their inherent instability with respect to air and moisture. Core-shell system Cd3P2/Zn3P2 is synthesized and studied from structural (morphology, crystallinity, shell diameter), chemical (composition of core, shell, and ligand sphere), and optical perspectives (absorbance, emission-steady state and time resolved, quantum yield, and air stability). The improvements achieved by coating with Zn3P2 are likely due to its identical crystal structure to Cd3P2 (tetragonal), highlighting the key role crystallographic concerns play in creating cutting edge core-shell NCs.

7.
J Colloid Interface Sci ; 582(Pt B): 1243-1250, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-32950840

RESUMO

HYPOTHESIS: The capability of making 3D directed assembly of colloidal nanoparticles on surfaces, instead of 2D one, is of major interest to generate, tailor, and enhance their original functionalities. The nanoxerography technique, i.e. electrostatic trapping of nanoparticles on charged patterns, showed such 3D assembly potentialities but is presently restricted to polarizable nanoparticles with a diameter superior to 20 nm. Hence, it should be possible to exploit a generic approach based on hybrid systems using larger nanoparticles as cargos to anchor smaller ones. EXPERIMENTS: A synthesis of hybrid nanoparticles in a raspberry-like configuration was performed using 50 nm SiO2 nanoparticles and photoluminescent 3-5 nm InP@ZnS (visible emission) or PbS (infrared emission) nanoparticles. Complete topographical and photoluminescent characterizations were carried out on hybrid nanoparticle patterns assembled by nanoxerography and systematically compared to patterns obtained from single photoluminescent nanoparticles. FINDINGS: The synthesis approach is generic. Every hybrid nanoparticle system has led to 3D assemblies with improved photoluminescent signals compared to mono/bilayered assemblies. Straightforward applications for anti-counterfeiting are illustrated. The versatility of the proposed concept is expected to be applied to other nanoparticles to make the most of their magnetic, catalytic, optical etc. properties in a wide range of applications, sensors and devices.

8.
J Colloid Interface Sci ; 603: 572-581, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34216953

RESUMO

Particles stabilize fluid interfaces. In particular, oil/water Pickering emulsions undergo limited coalescence, yielding droplets of smaller size as the amount of particles is increased. Herein, we studied the effect of hydrophobic nanoparticles (<10 nm, alkyl-coated) on submicronic droplets (ca 100 nm) formed in an Ouzo system. We investigated thoroughly the water/tetrahydrofuran (THF)/butylated hydroxytoluene (BHT) reference diagram, in the absence and in the presence of nanoparticles, using the Nanoparticle Tracking Analysis (NTA) technique. This allowed us to characterize the size distributions in a much finer way than what is usually obtained using conventional Dynamic Light Scattering (DLS). Both a Surfactant-Free Microemulsion (SFME, thermodynamically stable) and an Ouzo (metastable spontaneous emulsion) domains were identified and the transition from one to the other could be characterized by specific features of the droplet size distributions. We found that the presence of the nanoparticles limits coalescence in the metastable domain. We also show that the alkyl-coated nanoparticles are irreversibly attached to the liquid-liquid interface.

9.
J Am Chem Soc ; 132(51): 18147-57, 2010 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-21126088

RESUMO

Advanced (1)H, (13)C, and (31)P solution and solid-state NMR studies combined with IR spectroscopy were used to probe, at the molecular scale, the composition and the surface chemistry of indium phosphide (InP) quantum dots (QDs) prepared via a non-coordinating solvent strategy. This nanomaterial can be described as a core-multishell object: an InP core, with a zinc blende bulk structure, is surrounded first by a partially oxidized surface shell, which is itself surrounded by an organic coating. This organic passivating layer is composed, in the first coordination sphere, of tightly bound palmitate ligands which display two different bonding modes. A second coordination sphere includes an unexpected dialkyl ketone and residual long-chain non-coordinating solvents (ODE and its isomers) which interact through weak intermolecular bonds with the alkyl chains of the carboxylate ligands. We show that this ketone is formed during the synthesis process via a decarboxylative coupling route and provides oxidative conditions which are responsible for the oxidation of the InP core surface. This phenomenon has a significant impact on the photoluminescence properties of the as-synthesized QDs and probably accounts for the failure of further growth of the InP core.

10.
Chem Commun (Camb) ; 56(22): 3321-3324, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32080695

RESUMO

The quest of exploring alternative materials for the replacement of toxic cadmium- and lead-based quantum dots (QDs) is necessary for envisaging a sustainable future but remains highly challenging. Tackling this issue, we present the synthesis of Zn3P2 nanocrystals (NCs) of unprecedented quality. New, reactive zinc precursors yield highly crystalline, colloidally stable particles, exhibiting oxide-free surfaces, size tunability and outstanding optical properties relative to previous reports of zinc phosphide QDs.

11.
Chem Commun (Camb) ; 55(64): 9539-9542, 2019 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-31334515

RESUMO

We report herein the synthesis of symmetric and non-symmetric bis-amidinato-germylene Fe(CO)3 complexes, as well as the preparation of the corresponding disymmetric germylene-stannylene and germylene-silylene complexes by selective displacement of a carbonyl ligand under UV-a light irradiation. The symmetric bis-germylene Fe(CO)3 complex has been applied in the synthesis of iron germanide nanocrystals.

12.
Dalton Trans ; 47(42): 15114-15120, 2018 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-30306994

RESUMO

The synthesis of iron germanide nanoparticles at the nanoscale is a challenging task. Here, we describe the preparation of nanocrystals of the hexagonal Fe1.67Ge phase via the thermolysis of single source precursors [{iPrNC(tBu)NiPr}RGe]Fe(CO)4 (where R = Cl, N(SiMe3)2) under mild conditions (200 °C). These bimetallic precursors and the corresponding germylenes [{iPrNC(tBu)NiPr}RGe] were fully characterized by spectroscopic techniques as well as single crystal X-ray diffraction. While the structural features of the molecular species were shown to be almost identical, the results of the thermolysis were highly dependent on the nature of R. When R = Cl, multimodal size distributions and non-controlled phases were obtained. In contrast, the thermolysis of [{iPrNC(tBu)NiPr}{N(SiMe3)2}Ge]Fe(CO)4 yielded pure ferromagnetic Fe1.67Ge nanoparticles with a mean diameter close to 6 nm and a narrow size distribution (<12%). These results were rationalized in terms of Ge-substituent bond energy thanks to a computational study.

13.
Chem Phys Lipids ; 148(2): 112-20, 2007 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-17574224

RESUMO

A new approach to functionalize triacylglycerol fish oils has been achieved. For the first time, hydrosilylation of various terminal and internal C=C double bonds in ethylenic triacylglycerol was performed under radical initiation sequence, which, after ethanolysis, gave the sol-gel processable triethoxysilyltriacylglycerol P(2). By the use of silyltriflate, new metalated triglycerides P(3), in which silyl fragments are C-bonded in alpha-position to glycerol groups, were synthesized. The sol-gel hydrolysis and polycondensation of triethoxysilyltriacylglycerol led to hybrid materials in which organic and inorganic moieties are covalently linked. These materials open new applications in drug delivery and pharmaceutical formulation.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Preparações Farmacêuticas/química , Silanos/química , Siloxanas/síntese química , Triglicerídeos/química , Etanol/química , Óleos de Peixe/química , Géis/química , Hidrólise , Solubilidade
15.
Chem Commun (Camb) ; 53(43): 5850-5853, 2017 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-28504805

RESUMO

Thanks to new water-soluble Ru nanoparticles (NPs) stabilized by sulfonated NHC ligands, we demonstrate that it is possible to monitor the catalyst/substrate interaction using NMR chemical shift perturbations (CSPs), under conditions that closely resemble those applied during the enantiospecific C-H deuteration of l-lysine. Correlating the pH dependence of the interaction of l-lysine with the surface of the RuNPs and its subsequent deuteration, our study underscores the importance of oriented binding to the surface as a critical factor for H/D exchange.

16.
Chempluschem ; 81(11): 1216-1223, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31964105

RESUMO

A detailed knowledge of surface chemistry is necessary to bridge the gap between nanocrystal synthesis and applications. Although it has been proposed that carboxylic acids bind to metal oxides in a dissociative NC(X)2 binding motif, this surface chemistry was inferred from indirect evidence on HfO2 nanocrystals (NCs). Here, a more detailed picture of the coordination mode of carboxylate ligands on HfO2 and ZrO2 NC surfaces is shown by direct observation through solid-state NMR techniques. Surface-adsorbed protons are clearly distinguished and two coordination modes of the carboxylic acid are noted: chelating and bridging. It is also found that secondary ligands penetrate the ligand shell and have the same orientation with respect to the surface as the primary ligands, indicating that the ionic or hydrogen-bonding interactions with the surface are more important than the van der Waals interactions with neighboring ligands. During ligand exchange with amines, the chelating carboxylate is removed preferentially. Finally, it is shown that the HfO2 and ZrO2 NCs catalyze imine formation from acetone and oleylamine. Together with the previously reported catalytic activity of HfO2 , these results put colloidal metal oxide nanocrystals squarely in the focus of catalysis research.

17.
Interface Focus ; 3(3): 20120103, 2013 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-24427542

RESUMO

A new generation of optimized contrast agents is emerging, based on metallic nanoparticles (NPs) and semiconductor nanocrystals for, respectively, magnetic resonance imaging (MRI) and near-infrared (NIR) fluorescent imaging techniques. Compared with established contrast agents, such as iron oxide NPs or organic dyes, these NPs benefit from several advantages: their magnetic and optical properties can be tuned through size, shape and composition engineering, their efficiency can exceed by several orders of magnitude that of contrast agents clinically used, their surface can be modified to incorporate specific targeting agents and antifolding polymers to increase blood circulation time and tumour recognition, and they can possibly be integrated in complex architecture to yield multi-modal imaging agents. In this review, we will report the materials of choice based on the understanding of the basic physics of NIR and MRI techniques and their corresponding syntheses as NPs. Surface engineering, water transfer and specific targeting will be highlighted prior to their first use for in vivo real-time imaging. Highly efficient NPs that are safer and target specific are likely to enter clinical application in a near future.

18.
Chem Commun (Camb) ; 49(100): 11788-90, 2013 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-24212095

RESUMO

Phase-pure FeP nanoparticles (NPs) have been synthesized through low temperature thermolysis of the single source precursor [(CO)4Fe(PH3)]. Examination of the mechanism demonstrates the central role of the labile CO ligands and the weak P-H bonds to yield stoichiometry controlled FeP materials.

20.
Langmuir ; 25(13): 7540-6, 2009 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-19496545

RESUMO

This work features an alternative approach to the well-documented preparation of silica nanoparticles in protic media. We present here the one-pot synthesis of silica nanoparticles of adjustable size (between 18 and 174 nm), prepared and stabilized in organic nonalcoholic solvents. This novel route is based on hydrolysis and condensation of tetraethoxysilane, using water as reactant and different primary amines (butylamine, octylamine, dodecylamine, hexadecylamine) as catalysts in tetrahydrofuran or dimethoxyethane. The growth rate can be finely adjusted, and the first stages of the formation are observed by transmission electronic microscopy, revealing a silicated network in which the silica particles are formed and then released in solution. The amine plays not only a catalyst role but is also implied, as well as the solvent, in the stabilization process and the size control of the particles. A detailed NMR study demonstrates a core-shell structure in which the silica core is surrounded by a layer of alkylammonium ions together with solvent.


Assuntos
Nanopartículas/química , Compostos Orgânicos/química , Dióxido de Silício/química , Álcoois/química , Espectroscopia de Ressonância Magnética , Microscopia Eletrônica de Transmissão , Estrutura Molecular , Tamanho da Partícula , Compostos de Amônio Quaternário/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA