Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Pathog ; 19(10): e1011711, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37801466

RESUMO

Preventing parasite transmission from humans to mosquitoes is recognised to be critical for achieving elimination and eradication of malaria. Consequently developing new antimalarial drugs with transmission-blocking properties is a priority. Large screening campaigns have identified many new transmission-blocking molecules, however little is known about how they target the mosquito-transmissible Plasmodium falciparum stage V gametocytes, or how they affect their underlying cell biology. To respond to this knowledge gap, we have developed a machine learning image analysis pipeline to characterise and compare the cellular phenotypes generated by transmission-blocking molecules during male gametogenesis. Using this approach, we studied 40 molecules, categorising their activity based upon timing of action and visual effects on the organisation of tubulin and DNA within the cell. Our data both proposes new modes of action and corroborates existing modes of action of identified transmission-blocking molecules. Furthermore, the characterised molecules provide a new armoury of tool compounds to probe gametocyte cell biology and the generated imaging dataset provides a new reference for researchers to correlate molecular target or gene deletion to specific cellular phenotype. Our analysis pipeline is not optimised for a specific organism and could be applied to any fluorescence microscopy dataset containing cells delineated by bounding boxes, and so is potentially extendible to any disease model.


Assuntos
Antimaláricos , Culicidae , Malária Falciparum , Malária , Humanos , Animais , Masculino , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Plasmodium falciparum , Biologia , Malária Falciparum/parasitologia
2.
Antimicrob Agents Chemother ; 65(11): e0031121, 2021 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-34460304

RESUMO

Novel bis-1,2,4-triazine compounds with potent in vitro activity against Plasmodium falciparum parasites were recently identified. The bis-1,2,4-triazines represent a unique antimalarial pharmacophore and are proposed to act by a novel but as-yet-unknown mechanism of action. This study investigated the activity of the bis-1,2,4-triazine MIPS-0004373 across the mammalian life cycle stages of the parasite and profiled the kinetics of activity against blood and transmission stage parasites in vitro and in vivo. MIPS-0004373 demonstrated rapid and potent activity against P. falciparum, with excellent in vitro activity against all asexual blood stages. Prolonged in vitro drug exposure failed to generate stable resistance de novo, suggesting a low propensity for the emergence of resistance. Excellent activity was observed against sexually committed ring stage parasites, but activity against mature gametocytes was limited to inhibiting male gametogenesis. Assessment of liver stage activity demonstrated good activity in an in vitro P. berghei model but no activity against Plasmodium cynomolgi hypnozoites or liver schizonts. The bis-1,2,4-triazine MIPS-0004373 efficiently cleared an established P. berghei infection in vivo, with efficacy similar to that of artesunate and chloroquine and a recrudescence profile comparable to that of chloroquine. This study demonstrates the suitability of bis-1,2,4-triazines for further development toward a novel treatment for acute malaria.


Assuntos
Malária , Parasitos , Animais , Malária/tratamento farmacológico , Masculino , Plasmodium berghei , Triazinas/farmacologia
3.
Nature ; 522(7556): 315-20, 2015 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-26085270

RESUMO

There is an urgent need for new drugs to treat malaria, with broad therapeutic potential and novel modes of action, to widen the scope of treatment and to overcome emerging drug resistance. Here we describe the discovery of DDD107498, a compound with a potent and novel spectrum of antimalarial activity against multiple life-cycle stages of the Plasmodium parasite, with good pharmacokinetic properties and an acceptable safety profile. DDD107498 demonstrates potential to address a variety of clinical needs, including single-dose treatment, transmission blocking and chemoprotection. DDD107498 was developed from a screening programme against blood-stage malaria parasites; its molecular target has been identified as translation elongation factor 2 (eEF2), which is responsible for the GTP-dependent translocation of the ribosome along messenger RNA, and is essential for protein synthesis. This discovery of eEF2 as a viable antimalarial drug target opens up new possibilities for drug discovery.


Assuntos
Antimaláricos/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Malária/parasitologia , Plasmodium/efeitos dos fármacos , Plasmodium/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Quinolinas/farmacologia , Animais , Antimaláricos/administração & dosagem , Antimaláricos/efeitos adversos , Antimaláricos/farmacocinética , Descoberta de Drogas , Feminino , Estágios do Ciclo de Vida/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/parasitologia , Malária/tratamento farmacológico , Masculino , Modelos Moleculares , Fator 2 de Elongação de Peptídeos/antagonistas & inibidores , Fator 2 de Elongação de Peptídeos/metabolismo , Plasmodium/genética , Plasmodium/crescimento & desenvolvimento , Plasmodium berghei/efeitos dos fármacos , Plasmodium berghei/fisiologia , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/metabolismo , Plasmodium vivax/efeitos dos fármacos , Plasmodium vivax/metabolismo , Quinolinas/administração & dosagem , Quinolinas/química , Quinolinas/farmacocinética
4.
Artigo em Inglês | MEDLINE | ID: mdl-33139275

RESUMO

Resistance to artemisinin-based combination therapy (ACT) in the Plasmodium falciparum parasite is threatening to reverse recent gains in reducing global deaths from malaria. While resistance manifests as delayed parasite clearance in patients, the phenotype can only spread geographically via the sexual stages and mosquito transmission. In addition to their asexual killing properties, artemisinin and its derivatives sterilize sexual male gametocytes. Whether resistant parasites overcome this sterilizing effect has not, however, been fully tested. Here, we analyzed P. falciparum clinical isolates from the Greater Mekong Subregion, each demonstrating delayed clinical clearance and known resistance-associated polymorphisms in the Kelch13 (PfK13var) gene. As well as demonstrating reduced asexual sensitivity to drug, certain PfK13var isolates demonstrated a marked reduction in sensitivity to artemisinin in an in vitro male gamete formation assay. Importantly, this same reduction in sensitivity was observed when the most resistant isolate was tested directly in mosquito feeds. These results indicate that, under artemisinin drug pressure, while sensitive parasites are blocked, resistant parasites continue transmission. This selective advantage for resistance transmission could favor acquisition of additional host-specificity or polymorphisms affecting partner drug sensitivity in mixed infections. Favored resistance transmission under ACT coverage could have profound implications for the spread of multidrug-resistant malaria beyond Southeast Asia.


Assuntos
Antimaláricos , Artemisininas , Culicidae , Malária Falciparum , Parasitos , Animais , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artemisininas/farmacologia , Artemisininas/uso terapêutico , Sudeste Asiático , Resistência a Medicamentos/genética , Humanos , Malária Falciparum/tratamento farmacológico , Masculino , Plasmodium falciparum/genética
5.
Anal Chem ; 90(20): 11972-11980, 2018 10 16.
Artigo em Inglês | MEDLINE | ID: mdl-30226760

RESUMO

Rapid and specific detection of single nucleotide polymorphisms (SNPs) related to drug resistance in infectious diseases is crucial for accurate prognostics, therapeutics and disease management at point-of-care. Here, we present a novel amplification method and provide universal guidelines for the detection of SNPs at isothermal conditions. This method, called USS-sbLAMP, consists of SNP-based loop-mediated isothermal amplification (sbLAMP) primers and unmodified self-stabilizing (USS) competitive primers that robustly delay or prevent unspecific amplification. Both sets of primers are incorporated into the same reaction mixture, but always targeting different alleles; one set specific to the wild type allele and the other to the mutant allele. The mechanism of action relies on thermodynamically favored hybridization of totally complementary primers, enabling allele-specific amplification. We successfully validate our method by detecting SNPs, C580Y and Y493H, in the Plasmodium falciparum kelch 13 gene that are responsible for resistance to artemisinin-based combination therapies currently used globally in the treatment of malaria. USS-sbLAMP primers can efficiently discriminate between SNPs with high sensitivity (limit of detection of 5 × 101 copies per reaction), efficiency, specificity and rapidness (<35 min) with the capability of quantitative measurements for point-of-care diagnosis, treatment guidance, and epidemiological reporting of drug-resistance.


Assuntos
Repetição Kelch/genética , Técnicas de Amplificação de Ácido Nucleico , Plasmodium falciparum/genética , Polimorfismo de Nucleotídeo Único/genética , Termodinâmica , Alelos , Primers do DNA/química , Humanos
7.
Cell Microbiol ; 17(2): 191-206, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25154861

RESUMO

Gametocytes are the sole Plasmodium parasite stages that infect mosquitoes; therefore development of functional gametes is required for malaria transmission. Flagellum assembly of the Plasmodium male gamete differs from that of most other eukaryotes in that it is intracytoplasmic but retains a key conserved feature: axonemes assemble from basal bodies. The centriole/basal body protein SAS-6 normally regulates assembly and duplication of these organelles and its depletion causes severe flagellar/ciliary abnormalities in a diverse array of eukaryotes. Since basal body and flagellum assembly are intimately coupled to male gamete development in Plasmodium, we hypothesized that SAS-6 disruption may cause gametogenesis defects and perturb transmission. We show that Plasmodium berghei sas6 knockouts display severely abnormal male gametogenesis presenting reduced basal body numbers, axonemal assembly defects and abnormal nuclear allocation. The defects in gametogenesis reduce fertilization and render Pbsas6 knockouts less infectious to mosquitoes. Additionally, we show that lack of Pbsas6 blocks transmission from mosquito to vertebrate host, revealing an additional yet undefined role in ookinete to sporulating oocysts transition. These findings underscore the vulnerability of the basal body/SAS-6 to malaria transmission blocking interventions.


Assuntos
Corpos Basais/fisiologia , Malária/transmissão , Plasmodium berghei/fisiologia , Proteínas de Protozoários/metabolismo , Animais , Culicidae/parasitologia , Técnicas de Inativação de Genes , Camundongos , Plasmodium berghei/genética , Plasmodium berghei/crescimento & desenvolvimento , Proteínas de Protozoários/genética
8.
Antimicrob Agents Chemother ; 59(6): 3298-305, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25801574

RESUMO

In response to a call for the global eradication of malaria, drug discovery has recently been extended to identify compounds that prevent the onward transmission of the parasite, which is mediated by Plasmodium falciparum stage V gametocytes. Lately, metabolic activity has been used in vitro as a surrogate for gametocyte viability; however, as gametocytes remain relatively quiescent at this stage, their ability to undergo onward development (gamete formation) may be a better measure of their functional viability. During gamete formation, female gametocytes undergo profound morphological changes and express translationally repressed mRNA. By assessing female gamete cell surface expression of one such repressed protein, Pfs25, as the readout for female gametocyte functional viability, we developed an imaging-based high-throughput screening (HTS) assay to identify transmission-blocking compounds. This assay, designated the P. falciparum female gametocyte activation assay (FGAA), was scaled up to a high-throughput format (Z' factor, 0.7 ± 0.1) and subsequently validated using a selection of 50 known antimalarials from diverse chemical families. Only a few of these agents showed submicromolar 50% inhibitory concentrations in the assay: thiostrepton, methylene blue, and some endoperoxides. To determine the best conditions for HTS, a robustness test was performed with a selection of the GlaxoSmithKline Tres Cantos Antimalarial Set (TCAMS) and the final screening conditions for this library were determined to be a 2 µM concentration and 48 h of incubation with gametocytes. The P. falciparum FGAA has been proven to be a robust HTS assay faithful to Plasmodium transmission-stage cell biology, and it is an innovative useful tool for antimalarial drug discovery which aims to identify new molecules with transmission-blocking potential.


Assuntos
Antimaláricos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Animais , Feminino , Ensaios de Triagem em Larga Escala , Concentração Inibidora 50 , Azul de Metileno/farmacologia , Plasmodium falciparum/genética , RNA Mensageiro/genética , Tioestreptona/farmacologia
9.
Antimicrob Agents Chemother ; 59(2): 950-9, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25421480

RESUMO

Current antimalarials are under continuous threat due to the relentless development of drug resistance by malaria parasites. We previously reported promising in vitro parasite-killing activity with the histone methyltransferase inhibitor BIX-01294 and its analogue TM2-115. Here, we further characterize these diaminoquinazolines for in vitro and in vivo efficacy and pharmacokinetic properties to prioritize and direct compound development. BIX-01294 and TM2-115 displayed potent in vitro activity, with 50% inhibitory concentrations (IC50s) of <50 nM against drug-sensitive laboratory strains and multidrug-resistant field isolates, including artemisinin-refractory Plasmodium falciparum isolates. Activities against ex vivo clinical isolates of both P. falciparum and Plasmodium vivax were similar, with potencies of 300 to 400 nM. Sexual-stage gametocyte inhibition occurs at micromolar levels; however, mature gametocyte progression to gamete formation is inhibited at submicromolar concentrations. Parasite reduction ratio analysis confirms a high asexual-stage rate of killing. Both compounds examined displayed oral efficacy in in vivo mouse models of Plasmodium berghei and P. falciparum infection. The discovery of a rapid and broadly acting antimalarial compound class targeting blood stage infection, including transmission stage parasites, and effective against multiple malaria-causing species reveals the diaminoquinazoline scaffold to be a very promising lead for development into greatly needed novel therapies to control malaria.


Assuntos
Antimaláricos/uso terapêutico , Azepinas/uso terapêutico , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Malária/tratamento farmacológico , Quinazolinas/uso terapêutico , Animais , Antimaláricos/química , Azepinas/química , Feminino , Células Hep G2 , Histona Metiltransferases , Humanos , Malária Falciparum/tratamento farmacológico , Camundongos , Camundongos SCID , Plasmodium berghei/efeitos dos fármacos , Plasmodium berghei/patogenicidade , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/patogenicidade , Quinazolinas/química
10.
Cell Microbiol ; 16(5): 734-50, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24612056

RESUMO

Motility is a fundamental part of cellular life and survival, including for Plasmodium parasites--single-celled protozoan pathogens responsible for human malaria. The motile life cycle forms achieve motility, called gliding, via the activity of an internal actomyosin motor. Although gliding is based on the well-studied system of actin and myosin, its core biomechanics are not completely understood. Currently accepted models suggest it results from a specifically organized cellular motor that produces a rearward directional force. When linked to surface-bound adhesins, this force is passaged to the cell posterior, propelling the parasite forwards. Gliding motility is observed in all three life cycle stages of Plasmodium: sporozoites, merozoites and ookinetes. However, it is only the ookinetes--formed inside the midgut of infected mosquitoes--that display continuous gliding without the necessity of host cell entry. This makes them ideal candidates for invasion-free biomechanical analysis. Here we apply a plate-based imaging approach to study ookinete motion in three-dimensional (3D) space to understand Plasmodium cell motility and how movement facilitates midgut colonization. Using single-cell tracking and numerical analysis of parasite motion in 3D, our analysis demonstrates that ookinetes move with a conserved left-handed helical trajectory. Investigation of cell morphology suggests this trajectory may be based on the ookinete subpellicular cytoskeleton, with complementary whole and subcellular electron microscopy showing that, like their motion paths, ookinetes share a conserved left-handed corkscrew shape and underlying twisted microtubular architecture. Through comparisons of 3D movement between wild-type ookinetes and a cytoskeleton-knockout mutant we demonstrate that perturbation of cell shape changes motion from helical to broadly linear. Therefore, while the precise linkages between cellular architecture and actomyosin motor organization remain unknown, our analysis suggests that the molecular basis of cell shape may, in addition to motor force, be a key adaptive strategy for malaria parasite dissemination and, as such, transmission.


Assuntos
Fenômenos Biomecânicos , Plasmodium/citologia , Plasmodium/fisiologia , Actinas/metabolismo , Imageamento Tridimensional , Locomoção , Microscopia , Miosinas/metabolismo , Imagem Óptica
11.
Malar J ; 14: 234, 2015 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-26040313

RESUMO

BACKGROUND: A major requirement for malaria elimination is the development of transmission-blocking interventions. In vitro transmission-blocking bioassays currently mostly rely on the use of very few Plasmodium falciparum reference laboratory strains isolated decades ago. To fill a piece of the gap between laboratory experimental models and natural systems, the purpose of this work was to determine if culture-adapted field isolates of P. falciparum are suitable for in vitro transmission-blocking bioassays targeting functional maturity of male gametocytes: exflagellation. METHODS: Plasmodium falciparum isolates were adapted to in vitro culture before being used for in vitro gametocyte production. Maturation was assessed by microscopic observation of gametocyte morphology over time of culture and the functional viability of male gametocytes was assessed by microscopic counting of exflagellating gametocytes. Suitability for in vitro exflagellation-blocking bioassays was determined using dihydroartemisinin and methylene blue. RESULTS: In vitro gametocyte production was achieved using two isolates from French Guiana and two isolates from Cambodia. Functional maturity of male gametocytes was assessed by exflagellation observations and all four isolates could be used in exflagellation-blocking bioassays with adequate response to methylene blue and dihydroartemisinin. CONCLUSION: This work shows that in vitro culture-adapted P. falciparum field isolates of different genetic background, from South America and Southeast Asia, can successfully be used for bioassays targeting the male gametocyte to gamete transition, exflagellation.


Assuntos
Malária Falciparum/prevenção & controle , Parasitologia/métodos , Plasmodium falciparum/fisiologia , Malária Falciparum/parasitologia , Plasmodium falciparum/isolamento & purificação , Reprodução
12.
Proc Natl Acad Sci U S A ; 109(21): 8298-303, 2012 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-22566611

RESUMO

There is an urgent need for new antimalarial drugs with novel mechanisms of action to deliver effective control and eradication programs. Parasite resistance to all existing antimalarial classes, including the artemisinins, has been reported during their clinical use. A failure to generate new antimalarials with novel mechanisms of action that circumvent the current resistance challenges will contribute to a resurgence in the disease which would represent a global health emergency. Here we present a unique generation of quinolone lead antimalarials with a dual mechanism of action against two respiratory enzymes, NADH:ubiquinone oxidoreductase (Plasmodium falciparum NDH2) and cytochrome bc(1). Inhibitor specificity for the two enzymes can be controlled subtly by manipulation of the privileged quinolone core at the 2 or 3 position. Inhibitors display potent (nanomolar) activity against both parasite enzymes and against multidrug-resistant P. falciparum parasites as evidenced by rapid and selective depolarization of the parasite mitochondrial membrane potential, leading to a disruption of pyrimidine metabolism and parasite death. Several analogs also display activity against liver-stage parasites (Plasmodium cynomolgi) as well as transmission-blocking properties. Lead optimized molecules also display potent oral antimalarial activity in the Plasmodium berghei mouse malaria model associated with favorable pharmacokinetic features that are aligned with a single-dose treatment. The ease and low cost of synthesis of these inhibitors fulfill the target product profile for the generation of a potent, safe, and inexpensive drug with the potential for eventual clinical deployment in the control and eradication of falciparum malaria.


Assuntos
Antimaláricos/farmacologia , Malária Falciparum/tratamento farmacológico , Malária Falciparum/prevenção & controle , Plasmodium falciparum/efeitos dos fármacos , Piridinas/farmacologia , Quinolonas/farmacologia , Animais , Antimaláricos/química , Células Cultivadas , Transporte de Elétrons/efeitos dos fármacos , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Complexo III da Cadeia de Transporte de Elétrons/antagonistas & inibidores , Hepatócitos/citologia , Hepatócitos/parasitologia , Macaca mulatta , Malária Falciparum/parasitologia , Masculino , Camundongos , Camundongos Endogâmicos , Mitocôndrias/efeitos dos fármacos , Plasmodium berghei/efeitos dos fármacos , Plasmodium berghei/crescimento & desenvolvimento , Plasmodium cynomolgi/efeitos dos fármacos , Plasmodium cynomolgi/crescimento & desenvolvimento , Plasmodium falciparum/crescimento & desenvolvimento , Piridinas/química , Quinolonas/química
13.
Malar J ; 13: 468, 2014 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-25439984

RESUMO

BACKGROUND: Gametocytes are the Plasmodium life stage that is solely responsible for malaria transmission. Despite their important role in perpetuating malaria, gametocyte differentiation and development is poorly understood. METHODS: To shed light on the biochemical changes that occur during asexual and gametocyte development, metabolic characterization of media from in vitro intra-erythrocytic Plasmodium falciparum cultures was performed throughout gametocyte development by applying 1H nuclear magnetic spectroscopy, and using sham erythrocyte cultures as controls. Spectral differences between parasite and sham cultures were assessed via principal component analyses and partial-least squares analyses, and univariate statistical methods. RESULTS: Clear parasite-associated changes in metabolism were observed throughout the culture period, revealing differences between asexual parasites and gametocyte stages. With culture progression and development of gametocytes, parasitic release of the glycolytic end products lactate, pyruvate, alanine, and glycerol, were found to be dramatically reduced whilst acetate release was greatly increased. Also, uptake of lipid moieties CH(2), CH(3), and CH = CH-CH(2)-CH(2) increased throughout gametocyte development, peaking with maturity. CONCLUSIONS: This study uniquely presents an initial characterization of the metabolic exchange between parasite and culture medium during in vitro P. falciparum gametocyte culture. Results suggest that energy metabolism and lipid utilization between the asexual stages and gametocytes is different. This study provides new insights for gametocyte-specific nutritional requirements to aid future optimization and standardization of in vitro gametocyte cultivation, and highlights areas of novel gametocyte cell biology that deserve to be studied in greater detail and may yield new targets for transmission-blocking drugs.


Assuntos
Metabolismo , Plasmodium falciparum/crescimento & desenvolvimento , Plasmodium falciparum/metabolismo , Meios de Cultura/química , Espectroscopia de Ressonância Magnética , Fenótipo
14.
Malar J ; 13: 483, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25486998

RESUMO

Indirect clinical measures assessing anti-malarial drug transmission-blocking activity in falciparum malaria include measurement of the duration of gametocytaemia, the rate of gametocyte clearance or the area under the gametocytaemia-time curve (AUC). These may provide useful comparative information, but they underestimate dose-response relationships for transmission-blocking activity. Following 8-aminoquinoline administration P. falciparum gametocytes are sterilized within hours, whereas clearance from blood takes days. Gametocytaemia AUC and clearance times are determined predominantly by the more numerous female gametocytes, which are generally less drug sensitive than the minority male gametocytes, whereas transmission-blocking activity and thus infectivity is determined by the more sensitive male forms. In choosing doses of transmission-blocking drugs there is no substitute yet for mosquito-feeding studies.


Assuntos
Antimaláricos/uso terapêutico , Transmissão de Doença Infecciosa/prevenção & controle , Malária Falciparum/tratamento farmacológico , Malária Falciparum/transmissão , Parasitemia/tratamento farmacológico , Plasmodium falciparum/efeitos dos fármacos , Aminoquinolinas/uso terapêutico , Humanos , Fatores de Tempo , Resultado do Tratamento
15.
Artif Intell Med ; 147: 102700, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38184363

RESUMO

BACKGROUND: The search for new antimalarial treatments is urgent due to growing resistance to existing therapies. The Open Source Malaria (OSM) project offers a promising starting point, having extensively screened various compounds for their effectiveness. Further analysis of the chemical space surrounding these compounds could provide the means for innovative drugs. METHODS: We report an optimisation-based method for quantitative structure-activity relationship (QSAR) modelling that provides explainable modelling of ligand activity through a mathematical programming formulation. The methodology is based on piecewise regression principles and offers optimal detection of breakpoint features, efficient allocation of samples into distinct sub-groups based on breakpoint feature values, and insightful regression coefficients. Analysis of OSM antimalarial compounds yields interpretable results through rules generated by the model that reflect the contribution of individual fingerprint fragments in ligand activity prediction. Using knowledge of fragment prioritisation and screening of commercially available compound libraries, potential lead compounds for antimalarials are identified and evaluated experimentally via a Plasmodium falciparum asexual growth inhibition assay (PfGIA) and a human cell cytotoxicity assay. CONCLUSIONS: Three compounds are identified as potential leads for antimalarials using the methodology described above. This work illustrates how explainable predictive models based on mathematical optimisation can pave the way towards more efficient fragment-based lead discovery as applied in malaria.


Assuntos
Antimaláricos , Malária , Humanos , Antimaláricos/farmacologia , Ligantes , Malária/tratamento farmacológico
16.
Nat Commun ; 15(1): 5219, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890312

RESUMO

With resistance to most antimalarials increasing, it is imperative that new drugs are developed. We previously identified an aryl acetamide compound, MMV006833 (M-833), that inhibited the ring-stage development of newly invaded merozoites. Here, we select parasites resistant to M-833 and identify mutations in the START lipid transfer protein (PF3D7_0104200, PfSTART1). Introducing PfSTART1 mutations into wildtype parasites reproduces resistance to M-833 as well as to more potent analogues. PfSTART1 binding to the analogues is validated using organic solvent-based Proteome Integral Solubility Alteration (Solvent PISA) assays. Imaging of invading merozoites shows the inhibitors prevent the development of ring-stage parasites potentially by inhibiting the expansion of the encasing parasitophorous vacuole membrane. The PfSTART1-targeting compounds also block transmission to mosquitoes and with multiple stages of the parasite's lifecycle being affected, PfSTART1 represents a drug target with a new mechanism of action.


Assuntos
Acetamidas , Antimaláricos , Plasmodium falciparum , Proteínas de Protozoários , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Plasmodium falciparum/crescimento & desenvolvimento , Acetamidas/farmacologia , Acetamidas/química , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Antimaláricos/farmacologia , Antimaláricos/química , Animais , Proteínas de Transporte/metabolismo , Proteínas de Transporte/genética , Mutação , Malária Falciparum/parasitologia , Malária Falciparum/prevenção & controle , Malária Falciparum/tratamento farmacológico , Humanos , Resistência a Medicamentos/genética , Resistência a Medicamentos/efeitos dos fármacos , Estágios do Ciclo de Vida/efeitos dos fármacos
17.
Antimicrob Agents Chemother ; 57(7): 3268-74, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23629698

RESUMO

It is the mature gametocytes of Plasmodium that are solely responsible for parasite transmission from the mammalian host to the mosquito. They are therefore a logical target for transmission-blocking antimalarial interventions, which aim to break the cycle of reinfection and reduce the prevalence of malaria cases. Gametocytes, however, are not a homogeneous cell population. They are sexually dimorphic, and both males and females are required for parasite transmission. Using two bioassays, we explored the effects of 20 antimalarials on the functional viability of both male and female mature gametocytes of Plasmodium falciparum. We show that mature male gametocytes (as reported by their ability to produce male gametes, i.e., to exflagellate) are sensitive to antifolates, some endoperoxides, methylene blue, and thiostrepton, with submicromolar 50% inhibitory concentrations (IC50s), whereas female gametocytes (as reported by their ability to activate and form gametes expressing the marker Pfs25) are much less sensitive to antimalarial intervention, with only methylene blue and thiostrepton showing any significant activity. These findings show firstly that the antimalarial responses of male and female gametocytes differ and secondly that the mature male gametocyte should be considered a more vulnerable target than the female gametocyte for transmission-blocking drugs. Given the female-biased sex ratio of Plasmodium falciparum (∼3 to 5 females:1 male), current gametocyte assays without a sex-specific readout are unlikely to identify male-targeted compounds and prioritize them for further development. Both assays reported here are being scaled up to at least medium throughput and will permit identification of key transmission-blocking molecules that have been overlooked by other screening campaigns.


Assuntos
Antimaláricos/farmacologia , Plasmodium falciparum/efeitos dos fármacos , Antagonistas do Ácido Fólico/farmacologia , Malária Falciparum/tratamento farmacológico , Azul de Metileno/farmacologia , Plasmodium falciparum/fisiologia , Tioestreptona/farmacologia
18.
ACS Infect Dis ; 9(9): 1695-1710, 2023 09 08.
Artigo em Inglês | MEDLINE | ID: mdl-37639221

RESUMO

With the resistance increasing to current antimalarial medicines, there is an urgent need to discover new drug targets and to develop new medicines against these targets. We therefore screened the Open Global Health Library of Merck KGaA, Darmstadt, Germany, of 250 compounds against the asexual blood stage of the deadliest malarial parasite Plasmodium falciparum, from which eight inhibitors with low micromolar potency were found. Due to its combined potencies against parasite growth and inhibition of red blood cell invasion, the pyridyl-furan compound OGHL250 was prioritized for further optimization. The potency of the series lead compound (WEHI-518) was improved 250-fold to low nanomolar levels against parasite blood-stage growth. Parasites selected for resistance to a related compound, MMV396797, were also resistant to WEHI-518 as well as KDU731, an inhibitor of the phosphatidylinositol kinase PfPI4KIIIB, suggesting that this kinase is the target of the pyridyl-furan series. Inhibition of PfPI4KIIIB blocks multiple stages of the parasite's life cycle and other potent inhibitors are currently under preclinical development. MMV396797-resistant parasites possess an E1316D mutation in PfPKI4IIIB that clusters with known resistance mutations of other inhibitors of the kinase. Building upon earlier studies that showed that PfPI4KIIIB inhibitors block the development of the invasive merozoite parasite stage, we show that members of the pyridyl-furan series also block invasion and/or the conversion of merozoites into ring-stage intracellular parasites through inhibition of protein secretion and export into red blood cells.


Assuntos
Parasitos , Animais , Plasmodium falciparum/genética , Saúde Global , Eritrócitos , Transporte Proteico , Furanos
19.
Dis Model Mech ; 16(2)2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36715290

RESUMO

Phenotypic cell-based screens are critical tools for discovering candidate drugs for development, yet identification of the cellular target and mode of action of a candidate drug is often lacking. Using an imaging-based screen, we recently discovered an N-[(4-hydroxychroman-4-yl)methyl]-sulphonamide (N-4HCS) compound, DDD01035881, that blocks male gamete formation in the malaria parasite life cycle and subsequent transmission of the parasite to the mosquito with nanomolar activity. To identify the target(s) of DDD01035881, and of the N-4HCS class of compounds more broadly, we synthesised a photoactivatable derivative, probe 2. Photoaffinity labelling of probe 2 coupled with mass spectrometry identified the 16 kDa Plasmodium falciparum parasitophorous vacuole membrane protein Pfs16 as a potential parasite target. Complementary methods including cellular thermal shift assays confirmed that the parent molecule DDD01035881 stabilised Pfs16 in lysates from activated mature gametocytes. Combined with high-resolution, fluorescence and electron microscopy data, which demonstrated that parasites inhibited with N-4HCS compounds phenocopy the targeted deletion of Pfs16 in gametocytes, these data implicate Pfs16 as a likely target of DDD01035881. This finding establishes N-4HCS compounds as being flexible and effective starting candidates from which transmission-blocking antimalarials can be developed in the future.


Assuntos
Malária , Plasmodium , Animais , Masculino , Proteínas de Membrana/metabolismo , Vacúolos/metabolismo , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Sulfonamidas/metabolismo
20.
Antimicrob Agents Chemother ; 55(6): 2824-30, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21402842

RESUMO

During blood infection, malarial parasites use D-glucose as their main energy source. The Plasmodium falciparum hexose transporter (PfHT), which mediates the uptake of D-glucose into parasites, is essential for survival of asexual blood-stage parasites. Recently, genetic studies in the rodent malaria model, Plasmodium berghei, found that the orthologous hexose transporter (PbHT) is expressed throughout the parasite's development within the mosquito vector, in addition to being essential during intraerythrocytic development. Here, using a D-glucose-derived specific inhibitor of plasmodial hexose transporters, compound 3361, we have investigated the importance of D-glucose uptake during liver and transmission stages of P. berghei. Initially, we confirmed the expression of PbHT during liver stage development, using a green fluorescent protein (GFP) tagging strategy. Compound 3361 inhibited liver-stage parasite development, with a 50% inhibitory concentration (IC50) of 11 µM. This process was insensitive to the external D-glucose concentration. In addition, compound 3361 inhibited ookinete development and microgametogenesis, with IC50s in the region of 250 µM (the latter in a D-glucose-sensitive manner). Consistent with our findings for the effect of compound 3361 on vector parasite stages, 1 mM compound 3361 demonstrated transmission blocking activity. These data indicate that novel chemotherapeutic interventions that target PfHT may be active against liver and, to a lesser extent, transmission stages, in addition to blood stages.


Assuntos
Antimaláricos/farmacologia , Proteínas de Transporte de Monossacarídeos/antagonistas & inibidores , Plasmodium berghei/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Eritrócitos/parasitologia , Glucose/farmacologia , Humanos , Fígado/parasitologia , Camundongos , Plasmodium berghei/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA