Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Curr Issues Mol Biol ; 46(3): 2713-2740, 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38534787

RESUMO

HER2-positive breast cancer is one of the most prevalent forms of cancer among women worldwide. Generally, the molecular characteristics of this breast cancer include activation of human epidermal growth factor receptor-2 (HER2) and hormone receptor activation. HER2-positive is associated with a higher death rate, which led to the development of a monoclonal antibody called trastuzumab, specifically targeting HER2. The success rate of HER2-positive breast cancer treatment has been increased; however, drug resistance remains a challenge. This fact motivated us to explore the underlying molecular mechanisms of trastuzumab resistance. For this purpose, a two-fold approach was taken by considering well-known breast cancer cell lines SKBR3 and BT474. In the first fold, trastuzumab treatment doses were optimized separately for both cell lines. This was done based on the proliferation rate of cells in response to a wide variety of medication dosages. Thereafter, each cell line was cultivated with a steady dosage of herceptin for several months. During this period, six time points were selected for further in vitro analysis, ranging from the untreated cell line at the beginning to a fully resistant cell line at the end of the experiment. In the second fold, nucleic acids were extracted for further high throughput-based microarray experiments of gene and microRNA expression. Such expression data were further analyzed in order to infer the molecular mechanisms involved in the underlying development of trastuzumab resistance. In the list of differentially expressed genes and miRNAs, multiple genes (e.g., BIRC5, E2F1, TFRC, and USP1) and miRNAs (e.g., hsa miR 574 3p, hsa miR 4530, and hsa miR 197 3p) responsible for trastuzumab resistance were found. Downstream analysis showed that TFRC, E2F1, and USP1 were also targeted by hsa-miR-8485. Moreover, it indicated that miR-4701-5p was highly expressed as compared to TFRC in the SKBR3 cell line. These results unveil key genes and miRNAs as molecular regulators for trastuzumab resistance.

2.
Methods ; 181-182: 5-14, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31740366

RESUMO

Network analysis is a powerful tool for modelling biological systems. We propose a new approach that integrates the genomic interaction data at population level with the proteomic interaction data. In our approach we use chromatin interaction analysis by paired-end tag sequencing (ChIA-PET) data from human genome to construct a set of genomic interaction networks, considering the natural partitioning of chromatin into chromatin contact domains (CCD). The genomic networks are then mapped onto proteomic interactions, to create protein-protein interaction (PPI) subnetworks. Furthermore, the network-based topological properties of these proteomic subnetworks are investigated, namely closeness centrality, betweenness centrality and clustering coefficient. We statistically confirm, that networks identified by our method significantly differ from random networks in these network properties. Additionally, we identify one of the regions, namely chr6:32014923-33217929, as having an above-random concentration of the single nucleotide polymorphisms (SNPs) related to autoimmune diseases. Then we present it in the form of a meta-network, which includes multi-omic data: genomic contact sites (anchors), genes, proteins and SNPs. Using this example we demonstrate, that the created networks provide a valid mapping of genes to SNPs, expanding on the raw SNP dataset used.


Assuntos
Doenças Autoimunes/genética , Redes Reguladoras de Genes , Estudo de Associação Genômica Ampla/métodos , Genômica/métodos , Proteômica/métodos , Cromatina/metabolismo , Montagem e Desmontagem da Cromatina/genética , Análise por Conglomerados , Genoma Humano , Humanos , Polimorfismo de Nucleotídeo Único , Mapeamento de Interação de Proteínas/métodos , Mapas de Interação de Proteínas/genética
3.
Appl Psychol Health Well Being ; 14(2): 519-536, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34786848

RESUMO

This study aims to investigate how daily activities affect mood in the context of social distancing guidelines enforced during the COVID-19 pandemic. Using Ecological Momentary Assessment (EMA) administered four times a day during a 2-week period, we asked participants (N = 91) about their mood and the activities they engaged in. Seven individuals were selected for a follow-up, open-ended questionnaire. Results show that a stable routine, including physical exercise, hobbies, regular sleep hours, and minimal time spent in front of the computer, helps maintain a good mood. Coping strategies such as planning and scheduling help keep routines and circadian rhythms stable. Face-to-face contact is associated with a more positive mood, while similar interaction through electronic communication has a less positive effect. We observe an effect related to the infodemic phenomenon: Daily reports on COVID-19 cases and deaths affect mood fluctuations. This is an important consideration in shaping public information policies.


Assuntos
COVID-19 , Afeto , COVID-19/prevenção & controle , Eletrônica , Humanos , Pandemias , Distanciamento Físico
4.
Comput Struct Biotechnol J ; 20: 3591-3603, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860407

RESUMO

The 2 m-long human DNA is tightly intertwined into the cell nucleus of the size of 10 µm. The DNA packing is explained by folding of chromatin fiber. This folding leads to the formation of such hierarchical structures as: chromosomal territories, compartments; densely-packed genomic regions known as Topologically Associating Domains (TADs), or Chromatin Contact Domains (CCDs), and loops. We propose models of dynamical human genome folding into hierarchical components in human lymphoblastoid, stem cell, and fibroblast cell lines. Our models are based on explosive percolation theory. The chromosomes are modeled as graphs where CTCF chromatin loops are represented as edges. The folding trajectory is simulated by gradually introducing loops to the graph following various edge addition strategies that are based on topological network properties, chromatin loop frequencies, compartmentalization, or epigenomic features. Finally, we propose the genome folding model - a biophysical pseudo-time process guided by a single scalar order parameter. The parameter is calculated by Linear Discriminant Analysis of chromatin features. We also include dynamics of loop formation by using Loop Extrusion Model (LEM) while adding them to the system. The chromatin phase separation, where fiber folds in 3D space into topological domains and compartments, is observed when the critical number of contacts is reached. We also observe that at least 80% of the loops are needed for chromatin fiber to condense in 3D space, and this is constant through various cell lines. Overall, our in-silico model integrates the high-throughput 3D genome interaction experimental data with the novel theoretical concept of phase separation, which allows us to model event-based time dynamics of chromatin loop formation and folding trajectories.

5.
J Comput Biol ; 27(9): 1471-1485, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32175768

RESUMO

The dendritic spines play a crucial role in learning and memory processes, epileptogenesis, drug addiction, and postinjury recovery. The shape of the dendritic spine is a morphological key to understand learning and memory process. The classification of the dendritic spines is based on their shapes but the major questions are how the shapes changes in time, how the synaptic strength changes, and is there a correlation between shapes and synaptic strength? Because the changes of the classes by dendritic spines during activation are time dependent, the forward-directed autoregressive hidden Markov model (ARHMM) can be used to model these changes. It is also more appropriate to use an ARHMM directed backward in time. Thus, the mixture of forward-directed ARHMM and backward-directed ARHMM (MARHMM) is used to model time-dependent data related to the dendritic spines. In this article, we discuss (1) how to choose the initial probability vector and transition and dependence matrices in ARHMM and MARHMM for modeling the dendritic spines changes and (2) how to estimate these matrices. Many descriptors to classify dendritic spines in two-dimensional or/and three-dimensional (3D) are available. Our results from sensitivity analysis show that the classification that comes from 3D descriptors is closer to the truth, and estimated transition and dependence probability matrices are connected with the molecular mechanism of the dendritic spines activation.


Assuntos
Células Dendríticas/fisiologia , Espinhas Dendríticas/fisiologia , Cadeias de Markov , Modelos Teóricos , Animais , Espinhas Dendríticas/patologia , Humanos , Aprendizagem/fisiologia , Memória/fisiologia
7.
J Comput Biol ; 26(4): 322-335, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30810368

RESUMO

Categorizing spines into four subpopulations, stubby, mushroom, thin, or filopodia, is one of the common approaches in morphological analysis. Most cellular models describing synaptic plasticity, long-term potentiation (LTP), and long-term depression associate synaptic strength with either spine enlargement or spine shrinkage. Unfortunately, although we have a lot of available software with automatic spine segmentation and feature extraction methods, at present none of them allows for automatic and unbiased distinction between dendritic spine subpopulations, or for the detailed computational models of spine behavior. Therefore, we propose structural classification based on two different mathematical approaches: unsupervised construction of spine shape taxonomy based on arbitrary features (SpineTool) and supervised classification exploiting convolution kernels theory (2dSpAn). We compared two populations of spines in a form of static and dynamic data sets gathered at three time points. The dynamic data contain two sets of spines: the active set and the control set. The first population was stimulated with LTP, and the other population in its resting state was used as a control population. We propose one equation describing the distribution of variables that best fits all dendritic spine parameters.


Assuntos
Espinhas Dendríticas/fisiologia , Processamento de Imagem Assistida por Computador/métodos , Animais , Humanos , Potenciação de Longa Duração , Aprendizado de Máquina , Cadeias de Markov , Modelos Estatísticos
8.
Front Genet ; 10: 1047, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31798622

RESUMO

The microRNA (miRNA) biomolecules have a significant role in the development of breast cancer, and their expression profiles are different in each subtype of breast cancer. Thus, our goal is to use the Next Generation Sequencing provided high-throughput miRNA expression and clinical data in an integrated fashion to perform survival analysis in order to identify breast cancer subtype specific miRNAs, and analyze associated genes and transcription factors. We select top 100 miRNAs for each of the four subtypes, based on the value of hazard ratio and p-value, thereafter, identify 44 miRNAs that are related to all four subtypes, which we call as four-star miRNAs. Moreover, 12, 14, 9, and 15 subtype specific, viz. one-star miRNAs, are also identified. The resulting miRNAs are validated by using machine learning methods to differentiate tumor cases from controls (for four-star miRNAs), and subtypes (for one-star miRNAs). The four-star miRNAs provide 95% average accuracy, while in case of one-star miRNAs 81% accuracy is achieved for HER2-Enriched. Differences in expression of miRNAs between cancer stages is also analyzed, and a subset of eight miRNAs is found, for which expression is increased in stage II relative to stage I, including hsa-miR-10b-5p, which contributes to breast cancer metastasis. Subsequently we prepare regulatory networks in order to identify the interactions among miRNAs, their targeted genes and transcription factors (TFs), that are targeting those miRNAs. In this way, key regulatory circuits are identified, where genes such as TP53, ESR1, BRCA1, MYC, and others, that are known to be important genetic factors for the cause of breast cancer, produce transcription factors that target the same genes as well as interact with the selected miRNAs. To provide further biological validation the Protein-Protein Interaction (PPI) networks are prepared and Kyoto Encyclopedia of Genes and Genomes pathway and gene ontology (GO) enrichment analysis are performed. Among the enriched pathways many are breast cancer-related, such as PI3K-Akt or p53 signaling pathways, and contain proteins such as TP53, also present in the regulatory networks. Moreover, we find that the genes are enriched in GO terms associated with breast cancer. Our results provide detailed analysis of selected miRNAs and their regulatory networks.

9.
Front Psychol ; 10: 2671, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31920776

RESUMO

The radical embodied approach to cognition directs researchers' attention to skilled practice in a structured environment. This means that the structures present in the environment, including structured interactions with others and with artifacts, are put at least on a par with individual cognitive processes in explaining behavior. Both ritualized interactive formats and artifacts can be seen as forms of "external memory," usually shaped for a particular domain, that constrain skilled practice, perception, and cognition in online behavior and in learning and development. In this paper, we explore how a task involving the recognition of difficult sensory stimuli (wine) by collective systems (dyads) is modified by a domain-specific linguistic artifact (a sommelier card). We point to how using the card changes the way participants explore the stimuli individually, making it more consistent with culturally accrued sommelier know-how, as well as how it transforms the interaction between the participants, creating specific divisions of labor and novel relations. In our exploratory approach, we aim to integrate qualitative methods from anthropology and sociology with quantitative methods from psychology and the dynamical systems approach using both coded behavioral data and automatic movement analysis.

10.
PLoS One ; 12(8): e0182490, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28809957

RESUMO

This paper explores how information flow properties of a network affect the formation of categories shared between individuals, who are communicating through that network. Our work is based on the established multi-agent model of the emergence of linguistic categories grounded in external environment. We study how network information propagation efficiency and the direction of information flow affect categorization by performing simulations with idealized network topologies optimizing certain network centrality measures. We measure dynamic social adaptation when either network topology or environment is subject to change during the experiment, and the system has to adapt to new conditions. We find that both decentralized network topology efficient in information propagation and the presence of central authority (information flow from the center to peripheries) are beneficial for the formation of global agreement between agents. Systems with central authority cope well with network topology change, but are less robust in the case of environment change. These findings help to understand which network properties affect processes of social adaptation. They are important to inform the debate on the advantages and disadvantages of centralized systems.


Assuntos
Serviços de Informação , Linguística , Modelos Teóricos , Ajustamento Social , Humanos
11.
Front Psychol ; 7: 1321, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27729875

RESUMO

Most of our perceptions of and engagements with the world are shaped by our immersion in social interactions, cultural traditions, tools and linguistic categories. In this study we experimentally investigate the impact of two types of language-based coordination on the recognition and description of complex sensory stimuli: that of red wine. Participants were asked to taste, remember and successively recognize samples of wines within a larger set in a two-by-two experimental design: (1) either individually or in pairs, and (2) with or without the support of a sommelier card-a cultural linguistic tool designed for wine description. Both effectiveness of recognition and the kinds of errors in the four conditions were analyzed. While our experimental manipulations did not impact recognition accuracy, bias-variance decomposition of error revealed non-trivial differences in how participants solved the task. Pairs generally displayed reduced bias and increased variance compared to individuals, however the variance dropped significantly when they used the sommelier card. The effect of sommelier card reducing the variance was observed only in pairs, individuals did not seem to benefit from the cultural linguistic tool. Analysis of descriptions generated with the aid of sommelier cards shows that pairs were more coherent and discriminative than individuals. The findings are discussed in terms of global properties and dynamics of collective systems when constrained by different types of cultural practices.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA