RESUMO
Human epithelial tissues accumulate cancer-driver mutations with age1-9, yet tumour formation remains rare. The positive selection of these mutations suggests that they alter the behaviour and fitness of proliferating cells10-12. Thus, normal adult tissues become a patchwork of mutant clones competing for space and survival, with the fittest clones expanding by eliminating their less competitive neighbours11-14. However, little is known about how such dynamic competition in normal epithelia influences early tumorigenesis. Here we show that the majority of newly formed oesophageal tumours are eliminated through competition with mutant clones in the adjacent normal epithelium. We followed the fate of nascent, microscopic, pre-malignant tumours in a mouse model of oesophageal carcinogenesis and found that most were rapidly lost with no indication of tumour cell death, decreased proliferation or an anti-tumour immune response. However, deep sequencing of ten-day-old and one-year-old tumours showed evidence of selection on the surviving neoplasms. Induction of highly competitive clones in transgenic mice increased early tumour removal, whereas pharmacological inhibition of clonal competition reduced tumour loss. These results support a model in which survival of early neoplasms depends on their competitive fitness relative to that of mutant clones in the surrounding normal tissue. Mutant clones in normal epithelium have an unexpected anti-tumorigenic role in purging early tumours through cell competition, thereby preserving tissue integrity.
Assuntos
Competição entre as Células , Proliferação de Células , Células Clonais/citologia , Células Clonais/metabolismo , Células Epiteliais/citologia , Neoplasias Esofágicas/patologia , Mutação , Animais , Carcinogênese/imunologia , Morte Celular , Sobrevivência Celular , Modelos Animais de Doenças , Células Epiteliais/imunologia , Células Epiteliais/patologia , Epitélio/imunologia , Neoplasias Esofágicas/imunologia , Feminino , Masculino , Camundongos , Fatores de TempoRESUMO
BACKGROUND: Intratumoural heterogeneity (ITH) is well recognised in prostate cancer (PC), but its role in high-risk disease is uncertain. A prospective, single-arm, translational study using targeted multiregion prostate biopsies was carried out to study genomic and T-cell ITH in clinically high-risk PC aiming to identify drivers and potential therapeutic strategies. PATIENTS AND METHODS: Forty-nine men with elevated prostate-specific antigen and multiparametric-magnetic resonance imaging detected PC underwent image-guided multiregion transperineal biopsy. Seventy-nine tumour regions from 25 patients with PC underwent sequencing, analysis of mutations, copy number and neoepitopes combined with tumour infiltrating T-cell subset quantification. RESULTS: We demonstrated extensive somatic nucleotide variation and somatic copy number alteration heterogeneity in high-risk PC. Overall, the mutational burden was low (0.93/Megabase), but two patients had hypermutation, with loss of mismatch repair (MMR) proteins, MSH2 and MSH6. Somatic copy number alteration burden was higher in patients with metastatic hormone-naive PC (mHNPC) than in those with high-risk localised PC (hrlPC), independent of Gleason grade. Mutations were rarely ubiquitous and mutational frequencies were similar for mHNPC and hrlPC patients. Enrichment of focal 3q26.2 and 3q21.3, regions containing putative metastasis drivers, was seen in mHNPC patients. We found evidence of parallel evolution with three separate clones containing activating mutations of ß-catenin in a single patient. We demonstrated extensive intratumoural and intertumoural T-cell heterogeneity and high inflammatory infiltrate in the MMR-deficient (MMRD) patients and the patient with parallel evolution of ß-catenin. Analysis of all patients with activating Wnt/ß-catenin mutations demonstrated a low CD8+/FOXP3+ ratio, a potential surrogate marker of immune evasion. CONCLUSIONS: The PROGENY (PROstate cancer GENomic heterogeneitY) study provides a diagnostic platform suitable for studying tumour ITH. Genetic aberrations in clinically high-risk PC are associated with altered patterns of immune infiltrate in tumours. Activating mutations of Wnt/ß-catenin signalling pathway or MMRD could be considered as potential biomarkers for immunomodulation therapies. CLINICAL TRIALS.GOV IDENTIFIER: NCT02022371.