Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Crit Care ; 25(1): 65, 2021 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-33593393

RESUMO

BACKGROUND: Sepsis is typically hallmarked by high plasma (free) cortisol and suppressed cortisol breakdown, while plasma adrenocorticotropic hormone (ACTH) is not increased, referred to as 'ACTH-cortisol dissociation.' We hypothesized that sepsis acutely activates the hypothalamus to generate, via corticotropin-releasing hormone (CRH) and vasopressin (AVP), ACTH-induced hypercortisolemia. Thereafter, via increased availability of free cortisol, of which breakdown is reduced, feedback inhibition at the pituitary level interferes with normal processing of pro-opiomelanocortin (POMC) into ACTH, explaining the ACTH-cortisol dissociation. We further hypothesized that, in this constellation, POMC leaches into the circulation and can contribute to adrenocortical steroidogenesis. METHODS: In two human studies of acute (ICU admission to day 7, N = 71) and prolonged (from ICU day 7 until recovery; N = 65) sepsis-induced critical illness, POMC plasma concentrations were quantified in relation to plasma ACTH and cortisol. In a mouse study of acute (1 day), subacute (3 and 5 days) and prolonged (7 days) fluid-resuscitated, antibiotic-treated sepsis (N = 123), we further documented alterations in hypothalamic CRH and AVP, plasma and pituitary POMC and its glucocorticoid-receptor-regulated processing into ACTH, as well as adrenal cortex integrity and steroidogenesis markers. RESULTS: The two human studies revealed several-fold elevated plasma concentrations of the ACTH precursor POMC from the acute to the prolonged phase of sepsis and upon recovery (all p < 0.0001), coinciding with the known ACTH-cortisol dissociation. Elevated plasma POMC and ACTH-corticosterone dissociation were confirmed in the mouse model. In mice, sepsis acutely increased hypothalamic mRNA of CRH (p = 0.04) and AVP (p = 0.03) which subsequently normalized. From 3 days onward, pituitary expression of CRH receptor and AVP receptor was increased. From acute throughout prolonged sepsis, pituitary POMC mRNA was always elevated (all p < 0.05). In contrast, markers of POMC processing into ACTH and of ACTH secretion, negatively regulated by glucocorticoid receptor ligand binding, were suppressed at all time points (all p ≤ 0.05). Distorted adrenocortical structure (p < 0.05) and lipid depletion (p < 0.05) were present, while most markers of adrenocortical steroidogenic activity were increased at all time points (all p < 0.05). CONCLUSION: Together, these findings suggest that increased circulating POMC, through CRH/AVP-driven POMC expression and impaired processing into ACTH, could represent a new piece in the puzzling ACTH-cortisol dissociation.


Assuntos
Hormônio Adrenocorticotrópico/análise , Hidrocortisona/análise , Pró-Opiomelanocortina/análise , Sepse/sangue , Hormônio Adrenocorticotrópico/sangue , Idoso , Animais , Modelos Animais de Doenças , Feminino , Humanos , Hidrocortisona/sangue , Masculino , Camundongos , Pessoa de Meia-Idade , Pró-Opiomelanocortina/sangue , Sepse/fisiopatologia
2.
Crit Care ; 25(1): 252, 2021 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-34274000

RESUMO

BACKGROUND: Muscle weakness is a complication of critical illness which hampers recovery. In critically ill mice, supplementation with the ketone body 3-hydroxybutyrate has been shown to improve muscle force and to normalize illness-induced hypocholesterolemia. We hypothesized that altered cholesterol homeostasis is involved in development of critical illness-induced muscle weakness and that this pathway can be affected by 3-hydroxybutyrate. METHODS: In both human critically ill patients and septic mice, the association between circulating cholesterol concentrations and muscle weakness was assessed. In septic mice, the impact of 3-hydroxybutyrate supplementation on cholesterol homeostasis was evaluated with use of tracer technology and through analysis of markers of cholesterol metabolism and downstream pathways. RESULTS: Serum cholesterol concentrations were lower in weak than in non-weak critically ill patients, and in multivariable analysis adjusting for baseline risk factors, serum cholesterol was inversely correlated with weakness. In septic mice, plasma cholesterol correlated positively with muscle force. In septic mice, exogenous 3-hydroxybutyrate increased plasma cholesterol and altered cholesterol homeostasis, by normalization of plasma mevalonate and elevation of muscular, but not hepatic, expression of cholesterol synthesis genes. In septic mice, tracer technology revealed that 3-hydroxybutyrate was preferentially taken up by muscle and metabolized into cholesterol precursor mevalonate, rather than TCA metabolites. The 3-hydroxybutyrate protection against weakness was not related to ubiquinone or downstream myofiber mitochondrial function, whereas cholesterol content in myofibers was increased. CONCLUSIONS: These findings point to a role for low cholesterol in critical illness-induced muscle weakness and to a protective mechanism-of-action for 3-hydroxybutyrate supplementation.


Assuntos
Colesterol/análise , Homeostase/efeitos dos fármacos , Ácido 3-Hidroxibutírico , Idoso , Idoso de 80 Anos ou mais , Animais , Colesterol/metabolismo , Estado Terminal/terapia , Modelos Animais de Doenças , Feminino , Humanos , Metabolismo dos Lipídeos/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL/metabolismo , Camundongos Endogâmicos C57BL/fisiologia , Pessoa de Meia-Idade , Análise Multivariada , Debilidade Muscular/fisiopatologia
3.
Crit Care ; 23(1): 236, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31262340

RESUMO

BACKGROUND: ICU-acquired weakness is a debilitating consequence of prolonged critical illness that is associated with poor outcome. Recently, premorbid obesity has been shown to protect against such illness-induced muscle wasting and weakness. Here, we hypothesized that this protection was due to increased lipid and ketone availability. METHODS: In a centrally catheterized, fluid-resuscitated, antibiotic-treated mouse model of prolonged sepsis, we compared markers of lipolysis and fatty acid oxidation in lean and obese septic mice (n = 117). Next, we compared markers of muscle wasting and weakness in septic obese wild-type and adipose tissue-specific ATGL knockout (AAKO) mice (n = 73), in lean septic mice receiving either intravenous infusion of lipids or standard parenteral nutrition (PN) (n = 70), and in lean septic mice receiving standard PN supplemented with either the ketone body 3-hydroxybutyrate or isocaloric glucose (n = 49). RESULTS: Obese septic mice had more pronounced lipolysis (p ≤ 0.05), peripheral fatty acid oxidation (p ≤ 0.05), and ketogenesis (p ≤ 0.05) than lean mice. Blocking lipolysis in obese septic mice caused severely reduced muscle mass (32% loss vs. 15% in wild-type, p < 0.001) and specific maximal muscle force (59% loss vs. 0% in wild-type; p < 0.001). In contrast, intravenous infusion of lipids in lean septic mice maintained specific maximal muscle force up to healthy control levels (p = 0.6), whereas this was reduced with 28% in septic mice receiving standard PN (p = 0.006). Muscle mass was evenly reduced with 29% in both lean septic groups (p < 0.001). Lipid administration enhanced fatty acid oxidation (p ≤ 0.05) and ketogenesis (p < 0.001), but caused unfavorable liver steatosis (p = 0.01) and a deranged lipid profile (p ≤ 0.01). Supplementation of standard PN with 3-hydroxybutyrate also attenuated specific maximal muscle force up to healthy control levels (p = 0.1), but loss of muscle mass could not be prevented (25% loss in both septic groups; p < 0.001). Importantly, this intervention improved muscle regeneration markers (p ≤ 0.05) without the unfavorable side effects seen with lipid infusion. CONCLUSIONS: Obesity-induced muscle protection during sepsis is partly mediated by elevated mobilization and metabolism of endogenous fatty acids. Furthermore, increased availability of ketone bodies, either through ketogenesis or through parenteral infusion, appears to protect against sepsis-induced muscle weakness also in the lean.


Assuntos
Tecido Adiposo/fisiopatologia , Lipólise/fisiologia , Debilidade Muscular/etiologia , Sepse/complicações , Animais , Modelos Animais de Doenças , Ácidos Graxos/metabolismo , Ácidos Graxos/farmacocinética , Cetonas/metabolismo , Metabolismo dos Lipídeos/fisiologia , Masculino , Camundongos , Debilidade Muscular/metabolismo , Debilidade Muscular/fisiopatologia , Obesidade/fisiopatologia , Fatores de Proteção , Sepse/metabolismo , Sepse/fisiopatologia
4.
Am J Respir Crit Care Med ; 196(9): 1131-1143, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28475354

RESUMO

RATIONALE: Critical illness is hallmarked by muscle wasting and disturbances in glucose, lipid, and amino acid homeostasis. Circulating concentrations of glucagon, a catabolic hormone that affects these metabolic pathways, are elevated during critical illness. Insight in the nutritional regulation of glucagon and its metabolic role during critical illness is lacking. OBJECTIVES: To evaluate whether macronutrient infusion can suppress plasma glucagon during critical illness and study the role of illness-induced glucagon abundance in the disturbed glucose, lipid, and amino acid homeostasis and in muscle wasting during critical illness. METHODS: In human and mouse studies, we infused macronutrients and manipulated glucagon availability up and down to investigate its acute and chronic metabolic role during critical illness. MEASUREMENTS AND MAIN RESULTS: In critically ill patients, infusing glucose with insulin did not lower glucagon, whereas parenteral nutrition containing amino acids increased glucagon. In critically ill mice, infusion of amino acids increased glucagon and up-regulated markers of hepatic amino acid catabolism without affecting muscle wasting. Immunoneutralizing glucagon in critically ill mice only transiently affected glucose and lipid metabolism, did not affect muscle wasting, but drastically suppressed markers of hepatic amino acid catabolism and reversed the illness-induced hypoaminoacidemia. CONCLUSIONS: These data suggest that elevated glucagon availability during critical illness increases hepatic amino acid catabolism, explaining the illness-induced hypoaminoacidemia, without affecting muscle wasting and without a sustained impact on blood glucose. Furthermore, amino acid infusion likely results in a further breakdown of amino acids in the liver, mediated by increased glucagon, without preventing muscle wasting. Clinical trial registered with www.clinicaltrials.gov (NCT 00512122).


Assuntos
Glucagon/sangue , Atrofia Muscular/sangue , Atrofia Muscular/terapia , Nutrição Parenteral/métodos , Idoso , Aminoácidos/sangue , Animais , Glicemia , Estado Terminal , Modelos Animais de Doenças , Feminino , Glucagon/metabolismo , Glucose/administração & dosagem , Humanos , Insulina/administração & dosagem , Insulina/sangue , Masculino , Camundongos , Pessoa de Meia-Idade , Atrofia Muscular/metabolismo , Resultado do Tratamento
5.
Crit Care ; 17(5): R193, 2013 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-24020372

RESUMO

INTRODUCTION: We previously reported that in artificially-fed critically ill patients, adipose tissue reveals an increase in small adipocytes and accumulation of M2-macrophages. We hypothesized that nutrient-independent factors of critical illness explain these findings, and that the M2-macrophage accumulation may not be limited to adipose tissue. METHODS: In a long-term cecal ligation and puncture (CLP) mouse model of sepsis, we compared the effect of parenteral nutrition (CLP-fed, n = 13) with nutrient restriction (CLP-restricted, n = 11) on body composition, adipocyte size and macrophage accumulation in adipose tissue, liver and lungs. Fed healthy mice (n = 11) were studied as controls. In a human study, in vivo adipose tissue biopsies were studied from ICU patients (n = 40) enrolled in a randomized control trial which compared early initiation of parenteral nutrition (PN) versus tolerating nutrient restriction during the first week of ICU stay. Adipose tissue morphology was compared with healthy human controls (n = 13). RESULTS: Irrespective of nutritional intake, critically ill mice lost weight, fat and fat-free mass. Adipocyte number, proliferation marker Proliferating Cell Nuclear Antigen (PCNA) and adipogenic markers PPARγ and CCAAT/enhancer binding protein-ß (C/EBPß) increased with illness, irrespective of nutritional intake. M2-macrophage accumulation was observed in adipose tissue, liver and lungs of critically ill mice. Macrophage M2-markers correlated with CCL2 expression. In adipose tissue biopsies of critically ill patients, increased adipogenic markers and M2 macrophage accumulation were present irrespective of nutritional intake. CONCLUSIONS: Adipogenesis and accumulation of tissue M2-macrophages are hallmarks of prolonged critical illness, irrespective of nutritional management. During critical illness, M2-macrophages accumulate not only in adipose tissue, but also in the liver and lungs.


Assuntos
Adipogenia/fisiologia , Tecido Adiposo/metabolismo , Estado Terminal , Ativação de Macrófagos/fisiologia , Macrófagos/metabolismo , Estado Nutricional/fisiologia , Tecido Adiposo/patologia , Idoso , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade
6.
J Endocr Soc ; 7(3): bvad001, 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36726836

RESUMO

Context: Muscle expresses and secretes several myokines that bring about benefits in distant organs. Objective: We investigated the impact of critical illness on muscular expression of irisin, kynurenine aminotransferases, and amylase; association with clinical outcome; and impact of interventions that attenuate muscle wasting/weakness. Methods: We studied critically ill patients who participated in 2 randomized controlled trials (EPaNIC/NESCI) and documented time profiles in critically ill mice. Included in the study were 174 intensive care unit (ICU) patients (day 8 ± 1) vs 19 matched controls, and 60 mice subjected to surgery/sepsis vs 60 pair-fed healthy mice. Interventions studied included 7-day neuromuscular electrical stimulation (NMES), and withholding parenteral nutrition (PN) in the first ICU week (late PN) vs early PN. The main outcome measures were FNDC5 (irisin- precursor), KYAT1, KYAT3, and amylase mRNA expression in skeletal muscle. Results: Critically ill patients showed 34% to 80% lower mRNA expression of FNDC5, KYAT1, and amylases than controls (P < .0001). Critically ill mice showed time-dependent reductions in all mRNAs compared with healthy mice (P ≤ .04). The lower FNDC5 expression in patients was independently associated with a higher ICU mortality (P = .015) and ICU-acquired weakness (P = .012), whereas the lower amylase expression in ICU survivors was independently associated with a longer ICU stay (P = .0060). Lower amylase expression was independently associated with a lower risk of death (P = .048), and lower KYAT1 expression with a lower risk of weakness (P = .022). NMES increased FNDC5 expression compared with unstimulated muscle (P = .016), and late PN patients had a higher KYAT1 expression than early PN patients (P = .022). Conclusion: Expression of the studied myokines was affected by critical illness and associated with clinical outcomes, with limited effects of interventions that attenuate muscle wasting or weakness.

7.
Skelet Muscle ; 13(1): 12, 2023 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-37537627

RESUMO

BACKGROUND: Critical illness is hallmarked by severe stress and organ damage. Fibroblast growth factor 21 (FGF21) has been shown to rise during critical illness. FGF21 is a pleiotropic hormone that mediates adaptive responses to tissue injury and repair in various chronic pathological conditions. Animal studies have suggested that the critical illness-induced rise in FGF21 may to a certain extent protect against acute lung, liver, kidney and brain injury. However, FGF21 has also been shown to mediate fasting-induced loss of muscle mass and force. Such loss of muscle mass and force is a frequent problem of critically ill patients, associated with adverse outcome. In the present study, we therefore investigated whether the critical illness-induced acute rise in FGF21 is muscle-protective or rather contributes to the pathophysiology of critical illness-induced muscle weakness. METHODS: In a catheterised mouse model of critical illness induced by surgery and sepsis, we first assessed the effects of genetic FGF21 inactivation, and hence the inability to acutely increase FGF21, on survival, body weight, muscle wasting and weakness, and markers of muscle cellular stress and dysfunction in acute (30 h) and prolonged (5 days) critical illness. Secondly, we assessed whether any effects were mirrored by supplementing an FGF21 analogue (LY2405319) in prolonged critical illness. RESULTS: FGF21 was not required for survival of sepsis. Genetic FGF21 inactivation aggravated the critical illness-induced body weight loss (p = 0.0003), loss of muscle force (p = 0.03) and shift to smaller myofibers. This was accompanied by a more pronounced rise in markers of endoplasmic reticulum stress in muscle, without effects on impairments in mitochondrial respiratory chain enzyme activities or autophagy activation. Supplementing critically ill mice with LY2405319 did not affect survival, muscle force or weight, or markers of muscle cellular stress/dysfunction. CONCLUSIONS: Endogenous FGF21 is not required for sepsis survival, but may partially protect muscle force and may reduce cellular stress in muscle. Exogenous FGF21 supplementation failed to improve muscle force or cellular stress, not supporting the clinical applicability of FGF21 supplementation to protect against muscle weakness during critical illness.


Assuntos
Estado Terminal , Sepse , Animais , Camundongos , Estresse do Retículo Endoplasmático , Debilidade Muscular/etiologia , Debilidade Muscular/metabolismo , Modelos Animais de Doenças , Sepse/complicações , Sepse/metabolismo , Sepse/patologia
8.
Crit Care Med ; 40(1): 79-89, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21926599

RESUMO

OBJECTIVE: Muscle weakness contributes to prolonged rehabilitation and adverse outcome of critically ill patients. Distinction between a neurogenic and/or myogenic underlying problem is difficult using routine diagnostic tools. Preferential loss of myosin has been suggested to point to a myogenic component. We evaluated markers of muscle atrophy and denervation, and the myosin/actin ratio in limb and abdominal wall skeletal muscle of prolonged critically ill patients and matched controls in relation to insulin therapy and known risk factors for intensive care unit-acquired weakness. DESIGN: Secondary analysis of two large, prospective, single-center randomized clinical studies. SETTING: University hospital surgical and medical intensive care unit. PATIENTS: Critically ill patients and matched controls. INTERVENTIONS: Intensive care unit patients had been randomized to blood glucose control to 80-110 mg/dL with insulin infusion or conventional glucose management, where insulin was only administered when glucose levels rose above 215 mg/dL. MEASUREMENTS AND MAIN RESULTS: As compared with controls, rectus abdominis and vastus lateralis muscle of critically ill patients showed smaller myofiber size, decreased mRNA levels for myofibrillar proteins, increased proteolytic enzyme activities, and a lower myosin/actin ratio, virtually irrespective of insulin therapy. Increased forkhead box O1 action may have played a role. Most alterations were more severe in patients treated with corticosteroids. Duration of corticosteroid treatment, independent of duration of intensive care unit stay or other risk factors, was a dominant risk factor for a low myosin/actin ratio. The immature acetylcholine receptor subunit γ messenger RNA expression was elevated in vastus lateralis, independent of the myosin/actin ratio. CONCLUSIONS: Both limb and abdominal wall skeletal muscles of prolonged critically ill patients showed downregulation of protein synthesis at the gene expression level as well as increased proteolysis. This affected myosin to a greater extent than actin, resulting in a decreased myosin/actin ratio. Muscle atrophy was not ameliorated by intensive insulin therapy, but possibly aggravated by corticosteroids.


Assuntos
Estado Terminal , Atrofia Muscular/etiologia , Miosinas/metabolismo , Actinas/análise , Actinas/metabolismo , Idoso , Glicemia/análise , Estudos de Casos e Controles , Estado Terminal/terapia , Eletromiografia , Feminino , Humanos , Insulina/uso terapêutico , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/química , Músculo Esquelético/patologia , Músculo Esquelético/fisiopatologia , Atrofia Muscular/patologia , Atrofia Muscular/fisiopatologia , Atrofia Muscular/prevenção & controle , Miosinas/análise
9.
J Cachexia Sarcopenia Muscle ; 13(1): 418-433, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34994068

RESUMO

BACKGROUND: Muscle weakness is a frequently occurring complication of sepsis, associated with increased morbidity and mortality. Interestingly, obesity attenuates sepsis-induced muscle wasting and weakness. As the adipokine leptin is strongly elevated in obesity and has been shown to affect muscle homeostasis in non-septic conditions, we aimed to investigate whether leptin mediates the protective effect of obesity on sepsis-induced muscle weakness. METHODS: In a mouse model of sepsis, we investigated the effects of genetic leptin inactivation in obese mice (leptin-deficient obese mice vs. diet-induced obese mice) and of leptin supplementation in lean mice (n = 110). We assessed impact on survival, body weight and composition, markers of muscle wasting and weakness, inflammation, and lipid metabolism. In human lean and overweight/obese intensive care unit (ICU) patients, we assessed markers of protein catabolism (n = 1388) and serum leptin (n = 150). RESULTS: Sepsis mortality was highest in leptin-deficient obese mice (53% vs. 23% in diet-induced obese mice and 37% in lean mice, P = 0.03). Irrespective of leptin, after 5 days of sepsis, lean mice lost double the amount of lean body mass than obese mice (P < 0.0005). Also, irrespective of leptin, obese mice maintained specific muscle force up to healthy levels (P = 0.3) whereas lean mice suffered from reduced specific muscle force (72% of healthy controls, P < 0.0002). As compared with lean septic mice, both obese septic groups had less muscle atrophy, liver amino acid catabolism, and inflammation with a 50% lower plasma TNFα increase (P < 0.005). Conversely, again mainly irrespective of leptin, obese mice lost double amount of fat mass than lean mice after 5 days of sepsis (P < 0.0001), showed signs of increased lipolysis and ketogenesis, and had higher plasma HDL and LDL lipoprotein concentrations (P ≤ 0.01 for all). Muscle fibre type composition was not altered during sepsis, but a higher atrophy sensitivity of type IIb fibres compared with IIa and IIx fibres was observed, independent of obesity or leptin. After 5 days of critical illness, serum leptin was higher (P < 0.0001) and the net waste of nitrogen (P = 0.006) and plasma urea-to-creatinine ratio (P < 0.0001) was lower in overweight/obese compared with lean ICU human patients. CONCLUSIONS: Leptin did not mediate the protective effect of obesity against sepsis-induced muscle wasting and weakness in mice. Instead, obesity-independent of leptin-attenuated inflammation, protein catabolism, and dyslipidaemia, pathways that may play a role in the observed muscle protection.


Assuntos
Dislipidemias , Sepse , Animais , Humanos , Leptina , Camundongos , Debilidade Muscular/etiologia , Debilidade Muscular/metabolismo , Obesidade/complicações , Sepse/complicações , Sepse/metabolismo
10.
Endocrinology ; 163(1)2022 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-34698826

RESUMO

PURPOSE: Sepsis is hallmarked by high plasma cortisol/corticosterone (CORT), low adrenocorticotropic hormone (ACTH), and high pro-opiomelanocortin (POMC). While corticotropin-releasing hormone-(CRH) and arginine-vasopressin (AVP)-driven pituitary POMC expression remains active, POMC processing into ACTH becomes impaired. Low ACTH is accompanied by loss of adrenocortical structure, although steroidogenic enzymes remain expressed. We hypothesized that treatment of sepsis with hydrocortisone (HC) aggravates this phenotype whereas CRH infusion safeguards ACTH-driven adrenocortical structure. METHODS: In a fluid-resuscitated, antibiotics-treated mouse model of prolonged sepsis, we compared the effects of HC and CRH infusion with placebo on plasma ACTH, POMC, and CORT; on markers of hypothalamic CRH and AVP signaling and pituitary POMC processing; and on the adrenocortical structure and markers of steroidogenesis. In adrenal explants, we studied the steroidogenic capacity of POMC. RESULTS: During sepsis, HC further suppressed plasma ACTH, but not POMC, predominantly by suppressing sepsis-activated CRH/AVP-signaling pathways. In contrast, in CRH-treated sepsis, plasma ACTH was normalized following restoration of pituitary POMC processing. The sepsis-induced rise in markers of adrenocortical steroidogenesis was unaltered by CRH and suppressed partially by HC, which also increased adrenal markers of inflammation. Ex vivo stimulation of adrenal explants with POMC increased CORT as effectively as an equimolar dose of ACTH. CONCLUSIONS: Treatment of sepsis with HC impaired integrity and function of the hypothalamic-pituitary-adrenal axis at the level of the pituitary and the adrenal cortex while CRH restored pituitary POMC processing without affecting the adrenal cortex. Sepsis-induced high-circulating POMC may be responsible for ongoing adrenocortical steroidogenesis despite low ACTH.


Assuntos
Hormônio Liberador da Corticotropina/administração & dosagem , Hidrocortisona/administração & dosagem , Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipófise-Suprarrenal/efeitos dos fármacos , Sepse/metabolismo , Hormônio Adrenocorticotrópico/metabolismo , Animais , Arginina Vasopressina/química , Corticosterona/sangue , Hipotálamo/metabolismo , Hibridização In Situ , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Fenótipo , Hipófise/metabolismo , Adeno-Hipófise/metabolismo , Pró-Opiomelanocortina/química , Sepse/fisiopatologia , Transdução de Sinais
11.
Sci Rep ; 12(1): 10591, 2022 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-35732826

RESUMO

In septic mice, 3-hydroxybutyrate-sodium-salt has shown to partially prevent sepsis-induced muscle weakness. Although effective, the excessive sodium load was toxic. We here investigated whether ketone ester 3-hydroxybutyl-3-hydroxybutanoate (3HHB) was a safer alternative. In a mouse model of abdominal sepsis, the effects of increasing bolus doses of 3HHB enantiomers on mortality, morbidity and muscle force were investigated (n = 376). Next, plasma 3HB- clearance after bolus D-3HHB was investigated (n = 27). Subsequently, in septic mice, the effect on mortality and muscle force of a continuous D,L-3HHB infusion was investigated (n = 72). In septic mice, as compared with placebo, muscle force was increased at 20 mmol/kg/day L-3HHB and at 40 mmol/kg/day D- and D,L-3HHB. However, severity of illness and mortality was increased by doubling the effective bolus doses. Bolus 3HHB caused a higher 3HB- plasma peak and slower clearance with sepsis. Unlike bolus injections, continuous infusion of D,L-3HHB did not increase severity of illness or mortality, while remaining effective in improving muscle force. Treatment of septic mice with the ketone ester 3HHB partly prevented muscle weakness. Toxicity of 3HHB administered as bolus was completely avoided by continuous infusion of the same dose. Whether continuous infusion of ketone esters represents a promising intervention to also prevent ICU-acquired weakness in human patients should be investigated.


Assuntos
Ésteres , Cetonas , Paresia , Sepse , Animais , Estado Terminal , Modelos Animais de Doenças , Ésteres/uso terapêutico , Cetonas/uso terapêutico , Camundongos , Debilidade Muscular/tratamento farmacológico , Debilidade Muscular/prevenção & controle , Paresia/etiologia , Paresia/prevenção & controle , Sepse/complicações , Sepse/tratamento farmacológico , Sódio
12.
Crit Care ; 15(5): R245, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22018099

RESUMO

INTRODUCTION: We recently reported macrophage accumulation in adipose tissue of critically ill patients. Classically activated macrophage accumulation in adipose tissue is a known feature of obesity, where it is linked with increasing insulin resistance. However, the characteristics of adipose tissue macrophage accumulation in critical illness remain unknown. METHODS: We studied macrophage markers with immunostaining and gene expression in visceral and subcutaneous adipose tissue from healthy control subjects (n = 20) and non-surviving prolonged critically ill patients (n = 61). For comparison, also subcutaneous in vivo adipose tissue biopsies were studied from 15 prolonged critically ill patients. RESULTS: Subcutaneous and visceral adipose tissue biopsies from non-surviving prolonged critically ill patients displayed a large increase in macrophage staining. This staining corresponded with elevated gene expression of "alternatively activated" M2 macrophage markers arginase-1, IL-10 and CD163 and low levels of the "classically activated" M1 macrophage markers tumor necrosis factor (TNF)-α and inducible nitric-oxide synthase (iNOS). Immunostaining for CD163 confirmed positive M2 macrophage staining in both visceral and subcutaneous adipose tissue biopsies from critically ill patients. Surprisingly, circulating levels and tissue gene expression of the alternative M2 activators IL-4 and IL-13 were low and not different from controls. In contrast, adipose tissue protein levels of peroxisome proliferator-activated receptor-γ (PPARγ), a nuclear receptor required for M2 differentiation and acting downstream of IL-4, was markedly elevated in illness. In subcutaneous abdominal adipose tissue biopsies from surviving critically ill patients, we could confirm positive macrophage staining with CD68 and CD163. We also could confirm elevated arginase-1 gene expression and elevated PPARγ protein levels. CONCLUSIONS: Unlike obesity, critical illness evokes adipose tissue accumulation of alternatively activated M2 macrophages, which have local anti-inflammatory and insulin sensitizing features. This M2 macrophage accumulation may contribute to the previously observed protective metabolic activity of adipose tissue during critical illness.


Assuntos
Tecido Adiposo/química , Estado Terminal , Ativação de Macrófagos , Macrófagos/química , Tecido Adiposo/citologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/análise , Estudos de Casos e Controles , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
13.
Eur J Anaesthesiol ; 28(7): 535-43, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21505344

RESUMO

CONTEXT: Thoracic epidural anaesthesia (TEA) is increasingly used in high-risk surgical patients. We recently demonstrated that TEA-mediated cardiac sympathicolysis prevents the native right ventricular positive inotropic response to the induction of acute pulmonary hypertension. OBJECTIVES: In this subsequent study, we induced a selective TEA after acute pulmonary hypertension had been established. We hypothesised that TEA in these circumstances would also exert negative inotropic effects on the right ventricle, not being mediated by possible effects on vasotonus, right ventricular coronary flow dynamics or right ventricular oxygen balance. DESIGN: Randomised placebo-controlled animal study. SETTING: University hospital animal laboratory. INTERVENTIONS: Eighteen pigs were instrumented with an epidural catheter at the thoracic or lumbar level, a right ventricular pressure-volume catheter, transonic flow probes around the pulmonary artery and the right coronary artery, a pressure catheter in the pulmonary artery and a 22-G catheter within a right ventricular free wall coronary vein. Right ventricular pressure overload was induced by constricting the pulmonary artery. After haemodynamic stabilisation, animals were then assigned to receive TEA (n = 6, 1 ml bupivacaine 0.5%), lumbar epidural anaesthesia (LEA) (n = 6, 4 ml bupivacaine 0.5%) or control (n = 6, isotonic saline). The extent of the sympathetic block was assessed by thermography. Final measurements were performed 30 min after the induction of epidural anaesthesia. RESULTS: Pulmonary artery constriction increased pulmonary artery effective elastance and right ventricular contractility in all groups. TEA caused a sympathetic block ranging from C6 to T6, whereas LEA caused a block from T13 to L5. TEA decreased right ventricular contractility (1.5 ± 0.6 vs. 3.2 ± 0.9 mW s ml(-1)) and cardiac output (1.8 ± 0.3 vs. 2.4 ± 0.3 l min(-1)), although systemic vascular resistance was unaffected. In the LEA group, systemic vascular resistance decreased, but right ventricular contractility remained unchanged. Right ventricular coronary flow, oxygen delivery and consumption were comparable between the groups. CONCLUSION: During acute pulmonary hypertension, selective blockade of cardiac sympathetic nerves by TEA acutely abolished the protective adaptation of right ventricular contractility to right ventricular pressure overload and deteriorated systemic haemodynamics. This effect was attributable solely to the depression of right ventricular contractility and was neither the result of impaired right ventricular coronary flow dynamics nor of systemic vasodilation.


Assuntos
Anestesia Epidural/efeitos adversos , Bloqueio Nervoso Autônomo/efeitos adversos , Hemodinâmica , Hipertensão Pulmonar/complicações , Disfunção Ventricular Direita/etiologia , Função Ventricular Direita , Doença Aguda , Animais , Pressão Sanguínea , Cateterismo Cardíaco , Cateterismo de Swan-Ganz , Modelos Animais de Doenças , Homeostase , Hipertensão Pulmonar/fisiopatologia , Vértebras Lombares , Contração Miocárdica , Distribuição Aleatória , Suínos , Vértebras Torácicas , Vasodilatação , Disfunção Ventricular Direita/fisiopatologia , Pressão Ventricular
14.
BMC Pharmacol Toxicol ; 22(1): 50, 2021 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-34544493

RESUMO

BACKGROUND: In septic mice, supplementing parenteral nutrition with 150 mg/day 3-hydroxybutyrate-sodium-salt (3HB-Na) has previously shown to prevent muscle weakness without obvious toxicity. The main objective of this study was to identify the toxic threshold of 3HB-Na supplementation in septic mice, prior to translation of this promising intervention to human use. METHODS: In a centrally-catheterized, antibiotic-treated, fluid-resuscitated, parenterally fed mouse model of prolonged sepsis, we compared with placebo the effects of stepwise escalating doses starting from 150 mg/day 3HB-Na on illness severity and mortality (n = 103). For 5-day survivors, also the impact on ex-vivo-measured muscle force, blood electrolytes, and markers of vital organ inflammation/damage was documented. RESULTS: By doubling the reference dose of 150 mg/day to 300 mg/day 3HB-Na, illness severity scores doubled (p = 0.004) and mortality increased from 30.4 to 87.5 % (p = 0.002). De-escalating this dose to 225 mg still increased mortality (p ≤ 0.03) and reducing the dose to 180 mg/day still increased illness severity (p ≤ 0.04). Doses of 180 mg/day and higher caused more pronounced metabolic alkalosis and hypernatremia (p ≤ 0.04) and increased markers of kidney damage (p ≤ 0.05). Doses of 225 mg/day 3HB-Na and higher caused dehydration of brain and lungs (p ≤ 0.05) and increased markers of hippocampal neuronal damage and inflammation (p ≤ 0.02). Among survivors, 150 mg/day and 180 mg/day increased muscle force compared with placebo (p ≤ 0.05) up to healthy control levels (p ≥ 0.3). CONCLUSIONS: This study indicates that 150 mg/day 3HB-Na supplementation prevented sepsis-induced muscle weakness in mice. However, this dose appeared maximally effective though close to the toxic threshold, possibly in part explained by excessive Na+ intake with 3HB-Na. Although lower doses were not tested and thus might still hold therapeutic potential, the current results point towards a low toxic threshold for the clinical use of ketone salts in human critically ill patients. Whether 3HB-esters are equally effective and less toxic should be investigated.


Assuntos
Ácido 3-Hidroxibutírico/administração & dosagem , Suplementos Nutricionais , Debilidade Muscular/terapia , Sepse/terapia , Ácido 3-Hidroxibutírico/efeitos adversos , Equilíbrio Ácido-Base , Aldosterona/sangue , Animais , Encéfalo/patologia , Suplementos Nutricionais/efeitos adversos , Relação Dose-Resposta a Droga , Infusões Parenterais , Cetonas/metabolismo , Rim/patologia , Fígado/patologia , Masculino , Dose Máxima Tolerável , Camundongos Endogâmicos C57BL , Debilidade Muscular/etiologia , Debilidade Muscular/patologia , Sepse/complicações , Sepse/patologia , Índice de Gravidade de Doença
15.
J Cachexia Sarcopenia Muscle ; 12(2): 443-455, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33465304

RESUMO

BACKGROUND: Prolonged critically ill patients frequently develop debilitating muscle weakness that can affect both peripheral nerves and skeletal muscle. In-depth knowledge on the temporal contribution of neural and muscular components to muscle weakness is currently incomplete. METHODS: We used a fluid-resuscitated, antibiotic-treated, parenterally fed murine model of prolonged (5 days) sepsis-induced muscle weakness (caecal ligation and puncture; n = 148). Electromyography (EMG) measurements were performed in two nerve-muscle complexes, combined with histological analysis of neuromuscular junction denervation, axonal degeneration, and demyelination. In situ muscle force measurements distinguished neural from muscular contribution to reduced muscle force generation. In myofibres, imaging and biomechanics were combined to evaluate myofibrillar contractile calcium sensitivity, sarcomere organization, and fibre structural properties. Myosin and actin protein content and titin gene expression were measured on the whole muscle. RESULTS: Five days of sepsis resulted in increased EMG latency (P = 0.006) and decreased EMG amplitude (P < 0.0001) in the dorsal caudal tail nerve-tail complex, whereas only EMG amplitude was affected in the sciatic nerve-gastrocnemius muscle complex (P < 0.0001). Myelin sheath abnormalities (P = 0.2), axonal degeneration (number of axons; P = 0.4), and neuromuscular junction denervation (P = 0.09) were largely absent in response to sepsis, but signs of axonal swelling [higher axon area (P < 0.0001) and g-ratio (P = 0.03)] were observed. A reduction in maximal muscle force was present after indirect nerve stimulation (P = 0.007) and after direct muscle stimulation (P = 0.03). The degree of force reduction was similar with both stimulations (P = 0.2), identifying skeletal muscle, but not peripheral nerves, as the main contributor to muscle weakness. Myofibrillar calcium sensitivity of the contractile apparatus was unaffected by sepsis (P ≥ 0.6), whereas septic myofibres displayed disorganized sarcomeres (P < 0.0001) and altered myofibre axial elasticity (P < 0.0001). Septic myofibres suffered from increased rupturing in a passive stretching protocol (25% more than control myofibres; P = 0.04), which was associated with impaired myofibre active force generation (P = 0.04), linking altered myofibre integrity to function. Sepsis also caused a reduction in muscle titin gene expression (P = 0.04) and myosin and actin protein content (P = 0.05), but not the myosin-to-actin ratio (P = 0.7). CONCLUSIONS: Prolonged sepsis-induced muscle weakness may predominantly be related to a disruption in myofibrillar cytoarchitectural structure, rather than to neural abnormalities.


Assuntos
Contração Muscular , Sepse , Animais , Modelos Animais de Doenças , Humanos , Camundongos , Debilidade Muscular/etiologia , Músculo Esquelético
16.
J Crit Care ; 62: 65-71, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33285371

RESUMO

PURPOSE: To investigate the effect of Neuromuscular Electrical Stimulation (NMES) on muscle thickness, strength and morphological and molecular markers of the quadriceps. MATERIALS AND METHODS: Adult critically ill patients with an expected prolonged stay received unilateral quadriceps NMES sessions for 7 consecutive days. Before and after the intervention period, quadriceps thickness was measured with ultrasound. After the intervention period, strength was assessed in cooperative patients and muscle biopsies were taken. Multivariable regression was performed to identify factors affecting muscle thickness loss. RESULTS: Muscle thickness decreased less in the stimulated leg (-6 ± 16% versus -12 ± 15%, p = 0.014, n = 47). Strength was comparable. Opioid administration, minimal muscle contraction and more muscle thickness loss in the non-stimulated muscle were independently associated with better muscle thickness preservation. Stimulated muscles showed a shift towards larger myofibers and higher MyHC-I gene expression. NMES did not affect gene expression of other myofibrillary proteins, MuRF-1 or atrogin-1. Signs of myofiber necrosis and inflammation were comparable for both muscles. CONCLUSIONS: NMES attenuated the loss of muscle mass, but not of strength, in critically ill patients. Preservation of muscle mass was more likely in patients receiving opioids, patients with a minimal muscle contraction during NMES and patients more prone to lose muscle mass. TRIAL REGISTRATION: clinicaltrials.govNCT02133300.


Assuntos
Estado Terminal , Terapia por Estimulação Elétrica , Adulto , Estado Terminal/terapia , Estimulação Elétrica , Humanos , Força Muscular , Músculo Quadríceps/diagnóstico por imagem
17.
Crit Care Med ; 38(2): 602-11, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19851097

RESUMO

OBJECTIVES: Endocrine disturbances and a feeding-resistant wasting syndrome, characterized by a negative protein balance, promote delayed recovery and poor outcome of critical illness. Parenteral nutrition alone cannot counteract the hypercatabolic state, possibly in part as a result of aggravation of the hyperglycemic response to illness. In critically ill rabbits, we investigated the impact of varying amounts of intravenous glucose while maintaining normoglycemia on mortality, organ damage, and markers of catabolism/anabolism. DESIGN: Prospective, randomized laboratory investigation. SETTING: University animal and molecular laboratory. SUBJECTS: Three-month-old male rabbits. INTERVENTIONS: Critically ill rabbits were randomized into a fasting group, a standard parenteral nutrition group, and two groups receiving either intermediate or high additional physiological amounts of intravenous glucose while maintained normoglycemic with insulin. These groups were compared with a hyperglycemic group and healthy rabbits. Protein and lipid load was equal for all fed groups. MEASUREMENTS AND MAIN RESULTS: Varying intravenous glucose load did not affect mortality or organ damage provided hyperglycemia was prevented. Fasted critically ill rabbits lost weight, which was attenuated by increasing intravenous glucose load. As compared with healthy rabbits, mRNA expression and/or activity of several ubiquitin-proteasome pathway components, cathepsin-L and calpain-1, was elevated in skeletal muscle of fasted critically ill rabbits. Intravenous feeding was able to counteract this response. Excessive glucose load and/or hyperglycemia, however, reduced the protective effect of feeding. Genes investigated in the diaphragm and myocardium revealed roughly a similar response. Except in the normoglycemic group with intermediate glucose load, circulating thyroid hormone and insulin-like growth factor-1 levels decreased, most pronounced in hyperglycemic rabbits. CONCLUSIONS: Increasing intravenous glucose infusion within the physiological range, while maintaining normoglycemia, was safe for organ function and survival of critically ill rabbits. Concomitantly, it reduced the catabolic responses as compared with fasting. Whether this has a beneficial effect on muscle function and mass remains to be investigated.


Assuntos
Estado Terminal/terapia , Glucose/farmacologia , Actinas/análise , Animais , Glicemia/análise , Peso Corporal , Modelos Animais de Doenças , Glucose/administração & dosagem , Hiperglicemia/metabolismo , Infusões Intravenosas , Insulina/sangue , Fator de Crescimento Insulin-Like I/análise , Masculino , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Miocárdio/metabolismo , Miosinas/análise , Peptídeo Hidrolases/biossíntese , Coelhos , Tiroxina/sangue , Tri-Iodotironina/sangue
18.
Crit Care Med ; 37(10 Suppl): S391-7, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20046125

RESUMO

Critically ill patients frequently develop muscle weakness due to critical illness-related acute neuropathy and/or myopathy. This is a frequent disorder, with important short-term consequences that include difficulties in weaning from mechanical ventilation, associated prolonged intensive care unit and hospital stay, and increased mortality rates. In addition, many patients continue to suffer from decreased exercise capacity and quality of life for months to years after the acute event. Many different mechanisms seem to be involved in the development of this process. In this review, we will focus on the metabolic aspects of critical illness-related acute neuropathy and/or myopathy and, more specifically, on our clinical experience with achieving strict glycemic control using insulin. Our group has performed two randomized controlled trials in surgical and medical critically ill patients and studied the occurrence of critical illness-related acute neuropathy and/or myopathy and delayed weaning, one of its most important complications. Potential underlying mechanisms derived from experimental studies and from the analysis of biopsy samples harvested from critically ill patients or patients suffering from other catabolic states are discussed.


Assuntos
Cuidados Críticos/métodos , Doenças Musculares/tratamento farmacológico , Doenças Musculares/metabolismo , Polineuropatias/tratamento farmacológico , Polineuropatias/metabolismo , Estado Terminal/terapia , Relação Dose-Resposta a Droga , Humanos , Hipoglicemiantes/uso terapêutico , Insulina/uso terapêutico , Tempo de Internação , Metanálise como Assunto , Doenças Musculares/etiologia , Doenças Musculares/patologia , Doenças Neuromusculares/etiologia , Doenças Neuromusculares/metabolismo , Polineuropatias/etiologia , Polineuropatias/patologia , Ensaios Clínicos Controlados Aleatórios como Assunto , Respiração Artificial/efeitos adversos , Músculos Respiratórios/efeitos dos fármacos , Resultado do Tratamento
19.
Crit Care ; 13(5): R147, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19747372

RESUMO

INTRODUCTION: Prolonged critically ill patients reveal low circulating thyroid hormone levels without a rise in thyroid stimulating hormone (TSH). This condition is labeled "low 3,5,3'-tri-iodothyronine (T3) syndrome" or "nonthyroidal illness syndrome (NTI)" or "euthyroid sick syndrome". Despite the low circulating and peripheral tissue thyroid hormone levels, thyrotropin releasing hormone (TRH) expression in the hypothalamus is reduced and it remains unclear which mechanism is responsible. We set out to study whether increased hypothalamic T3 availability could reflect local thyrotoxicosis and explain feedback inhibition-induced suppression of the TRH gene in the context of the low T3 syndrome in prolonged critical illness. METHODS: Healthy rabbits were compared with prolonged critically ill, parenterally fed animals. We visualized TRH mRNA in the hypothalamus by in situ-hybridization and measured mRNA levels for the type II iodothyronine diodinase (D2), the thyroid hormone transporters monocarboxylate transporter (MCT) 8, MCT10 and organic anion co-transporting polypeptide 1C1 (OATP1C1) and the thyroid hormone receptors alpha (TRalpha) and beta (TRbeta) in the hypothalamus. We also measured the activity of the D2 and type III iodothyronine deiodinase (D3) enzymes. RESULTS: In the hypothalamus of prolonged critically ill rabbits with low circulating T3 and TSH, we observed decreased TRH mRNA, increased D2 mRNA and increased MCT10 and OATP1C1 mRNA while MCT8 gene expression was unaltered as compared with healthy controls. This coincided with low hypothalamic thyroxine (T4) and low-normal T3 concentrations, without a change at the thyroid hormone receptor level. CONCLUSIONS: Although expression of D2 and of the thyroid hormone transporters MCT10 and OATP1C1 were increased in the hypothalamus of prolonged critical ill animals, hypothalamic T4 and T3 content or thyroid hormone receptor expression were not elevated. Hence, decreased TRH gene expression, and hereby low TSH and T3 during prolonged critical illness, is not exclusively brought about by hypothalamic thyrotoxicosis, and infer other TRH suppressing factors to play a role.


Assuntos
Estado Terminal , Hipotálamo/metabolismo , Hipófise/metabolismo , Glândula Tireoide/metabolismo , Animais , Síndromes do Eutireóideo Doente/genética , Síndromes do Eutireóideo Doente/fisiopatologia , Fluorescência , Hipotálamo/fisiopatologia , Iodeto Peroxidase/genética , Iodeto Peroxidase/isolamento & purificação , Iodeto Peroxidase/metabolismo , Masculino , Modelos Animais , Transportadores de Ânions Orgânicos/genética , Transportadores de Ânions Orgânicos/isolamento & purificação , Transportadores de Ânions Orgânicos/metabolismo , Reação em Cadeia da Polimerase/métodos , RNA/isolamento & purificação , Coelhos , Análise de Sequência de DNA , Supressão Genética , Glândula Tireoide/fisiopatologia , Tireotoxicose/fisiopatologia , Hormônio Liberador de Tireotropina/genética , Hormônio Liberador de Tireotropina/isolamento & purificação , Hormônio Liberador de Tireotropina/metabolismo , Iodotironina Desiodinase Tipo II
20.
Horm Res ; 71(1): 2-11, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19039231

RESUMO

Hyperglycemia is a major risk factor for increased morbidity and mortality in the intensive care unit. In two large randomized controlled single-center studies, the maintenance of strict normoglycemia with intensive insulin therapy has been shown to reduce morbidity and mortality. The benefits were more pronounced with at least a few days of treatment. Several implementation studies confirmed that blood glucose control with intensive insulin therapy is beneficial for critically ill patients. Two studies planned as large randomized controlled trials evaluating the effect of glycemic control in adults were stopped prematurely because of protocol violation and/or increased risk of hypoglycemia. The only multicenter trial designed with sufficient statistical power to assess the impact of strict blood glucose control with intensive insulin therapy on survival of a heterogeneous adult critically ill patient population is still ongoing. While awaiting these results, the current evidence favors strict control of blood glucose levels to normoglycemia below 110 mg/dl. Avoiding glucose toxicity appears crucial to obtain the clinical benefits of this therapy, although direct insulin effects may contribute as well.


Assuntos
Glicemia/efeitos dos fármacos , Cuidados Críticos/métodos , Hiperglicemia/tratamento farmacológico , Insulina/administração & dosagem , Humanos , Hiperglicemia/sangue , Hipoglicemia/sangue , Hipoglicemia/induzido quimicamente , Insulina/efeitos adversos , Ensaios Clínicos Controlados Aleatórios como Assunto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA