Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Bioinformatics ; 20(1): 378, 2019 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-31286864

RESUMO

BACKGROUND: The QuantiGene® Plex 2.0 platform (ThermoFisher Scientific) combines bDNA with the Luminex/xMAP magnetic bead capturing technology to assess differential gene expression in a compound exposure setting. This technology allows multiplexing in a single well of a 96 or 384 multi-well plate and can thus be used in high throughput drug discovery mode. Data interpretation follows a three-step normalization/transformation flow in which raw median fluorescent gene signals are transformed to fold change values with the use of proper housekeeping genes and negative controls. Clear instructions on how to assess the data quality and tools to perform this analysis in high throughput mode are, however, currently lacking. RESULTS: In this paper we introduce QGprofiler, an open source R based shiny application. QGprofiler allows for proper QuantiGene® Plex 2.0 assay optimization, choice of housekeeping genes and data pre-processing up to fold change, including appropriate QC metrics. In addition, QGprofiler allows for an Akaike information criterion based dose response fold change model selection and has a built-in tool to detect the cytotoxic potential of compounds evaluated in a high throughput screening campaign. CONCLUSION: QGprofiler is a user friendly, open source available R based shiny application, which is developed to support drug discovery campaigns. In this context, entire compound libraries/series can be tested in dose response against a gene signature of choice in search for new disease relevant chemical entities. QGprofiler is available at: https://qgprofiler.openanalytics.eu/app/QGprofiler.


Assuntos
Descoberta de Drogas/métodos , Perfilação da Expressão Gênica/métodos , Software
2.
J Biomol Screen ; 19(4): 516-25, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24476585

RESUMO

Protein-protein interactions (PPIs) are attractive but challenging targets for drug discovery. To overcome numerous limitations of the currently available cell-based PPI assays, we have recently established a fully reversible microscopy-assisted fluorescent two-hybrid (F2H) assay. The F2H assay offers a fast and straightforward readout: an interaction-dependent co-localization of two distinguishable fluorescent signals at a defined spot in the nucleus of mammalian cells. We developed two reversible F2H assays for the interactions between the tumor suppressor p53 and its negative regulators, Mdm2 and Mdm4. We then performed a pilot F2H screen with a subset of compounds, including small molecules (such as Nutlin-3) and stapled peptides. We identified five cell-penetrating compounds as potent p53-Mdm2 inhibitors. However, none exhibited intracellular activity on p53-Mdm4. Live cell data generated by the F2H assays enable the characterization of stapled peptides based on their ability to penetrate cells and disrupt p53-Mdm2 interaction as well as p53-Mdm4 interaction. Here, we show that the F2H assays enable side-by-side analysis of substances' dual Mdm2-Mdm4 activity. In addition, they are suitable for testing various types of compounds (e.g., small molecules and peptidic inhibitors) and concurrently provide initial data on cellular toxicity. Furthermore, F2H assays readily allow real-time visualization of PPI dynamics in living cells.


Assuntos
Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Imunofluorescência , Ligação Proteica/efeitos dos fármacos , Técnicas do Sistema de Duplo-Híbrido , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Cricetinae , Humanos , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Reprodutibilidade dos Testes , Bibliotecas de Moléculas Pequenas , Proteína Supressora de Tumor p53/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA