Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 61(39): e202207484, 2022 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-35984673

RESUMO

Starting from a molecular pharmacophore, which is a marker of drug action in medicinal molecules, we propose that the heterosynthon, a supramolecular synthon between unlike functional groups, plays an analogous role in the design and discovery of high bioavailability drugs. The heterosynthon could provide a more efficient and economical route to novel drugs.


Assuntos
Disponibilidade Biológica , Cristalização
2.
Angew Chem Int Ed Engl ; 60(23): 12841-12846, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33779114

RESUMO

Higher cocrystal synthesis depends acutely on a knowledge of supramolecular synthons. We report three synthetic approaches towards ternary halogen bonded cocrystals that illustrate specificity and generality. Electrophilicity/nucleophilicity differences are needed among alternative sites of halogen bond formation. The two halogen bonds A⋅⋅⋅B and B⋅⋅⋅C in a halogen bonded ternary cocrystal ABC need to be of different strength. Interaction mimicry of hydrogen bonds by halogen bonds is a viable approach towards ternaries as illustrated with the pyrene structure. Finally, the crystal engineer should well be able to anticipate halogen bonds that are stronger than hydrogen bonds.

3.
Acc Chem Res ; 52(8): 2210-2220, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31318527

RESUMO

Crystal engineering is the art and science of making crystals by design. Crystallization is inherently a purifying phenomenon. Bringing together more than one organic compound into the same crystal always needs deliberate action. Cocrystals are important because they offer a route to the controlled modulation of crystal properties. The route to cocrystal synthesis was opened up with the heterosynthon concept, which considers the complementary recognition of chemical groups from different molecules. Using this concept, binary cocrystals of enormous variety have been generated, even as crystal engineering has evolved into a form of solid-state supramolecular synthesis. Introducing a third component (a component is somewhat arbitrarily defined as an organic substance that is a solid at room temperature, mostly with the idea of excluding solvates) in a stoichiometric manner requires substantially greater effort and a careful balance of intermolecular interactions-their strengths, directional properties, and distance falloff characteristics. The first systematic ternary cocrystal synthesis was reported around 15 years ago. Drawing in a fourth component in stoichiometric amounts is exceedingly difficult, and we reported such syntheses in 2016. To date, a limited number of ternary cocrystals have been realized (around 120 in all, with a half from our group) and an even smaller number of quaternary cocrystals (around 30, all from our group, barring one). It is impressive that our experiments largely yielded the intended higher cocrystal (three- or four-component) with very small traces of contaminating binaries and pure compounds. A fifth or sixth component may be brought into the solid in the manner of a solid solution in that these components are situated at one of the sites of the quaternary cocrystal. To date, five components have not been included stoichiometrically within the same crystal. This is still an open challenge. The merit in synthesizing (higher) cocrystals is that one can systematically engineer property modularity: Each component is associated with a distinct property. This is important in the pharmaceutical industry, where each component can, in principle, confer a different, desirable property-drug action, solubility, or permeability. However, difficult synthetic targets are also addressed in chemistry simply because they are there. The intellectual satisfaction in making something that is very difficult to make renders the enterprise worthwhile in itself, and new chemistry usually gets uncovered in the process. The development of synthetic organic chemistry can undoubtedly be credited to various reliable methods for chemical transformations, and many difficult total syntheses were achieved by employing these methods over two centuries of research. In contrast, supramolecular synthesis (of multicomponent cocrystals and other assemblies) is in no way at a similar level of sophistication because the subject is still relatively young. Our group and others have reported the synthesis of many higher cocrystals with reliable, reproducible, and robust design strategies. There is a general perception that the isolation of some of these cocrystals is a matter of luck! The crux of this Account is that far from being a serendipitous matter, higher cocrystals may only be made with a judicious combination of strategy and methodology-the essence of synthesis.

4.
Mol Pharm ; 17(12): 4435-4442, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-32941048

RESUMO

With the aim of developing multidrug solids through a tuned crystal engineering approach, we have selected two antiurinary infective drugs, namely, nitrofurantoin (NF) and trimethoprim (TMP) and isolated eight binary drug-drug solid solvates along with a nonsolvated cocrystal. Crystal structure analyses were performed for eight of these solids and rationalized in terms of known supramolecular synthons formed by pyrimidine, imide, and amine functionalities. Notably, the TMP-NF anhydrous cocrystal and its ionic cocrystal hydrate exhibit enhanced equilibrium solubilities compared to pure NF or the simple NF hydrate. Furthermore, the ionic cocrystal hydrate exhibits greater antibacterial activity against the Gram-negative bacteria, E. coli, compared to the parent TMP and NF at the lowest concentration of 3.9 µg/mL. This study indicates initial pathways using the cocrystal methodology that would help to eventually arrive at an antiurinary cocrystal with optimal properties.


Assuntos
Anti-Infecciosos Urinários/química , Composição de Medicamentos/métodos , Nitrofurantoína/química , Trimetoprima/química , Anti-Infecciosos Urinários/farmacologia , Anti-Infecciosos Urinários/uso terapêutico , Química Farmacêutica/métodos , Cristalização , Combinação de Medicamentos , Escherichia coli/efeitos dos fármacos , Humanos , Testes de Sensibilidade Microbiana , Nitrofurantoína/farmacologia , Nitrofurantoína/uso terapêutico , Solubilidade , Trimetoprima/farmacologia , Trimetoprima/uso terapêutico , Infecções Urinárias/tratamento farmacológico , Infecções Urinárias/microbiologia
5.
Acc Chem Res ; 51(11): 2957-2967, 2018 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-30351918

RESUMO

Mechanical properties of organic molecular crystals have been noted and studied over the years but the complexity of the subject and its relationship with diverse fields such as mechanochemistry, phase transformations, polymorphism, and chemical, mechanical, and materials engineering have slowed understanding. Any such understanding also needs conceptual advances-sophisticated instrumentation, computational modeling, and chemical insight-lack of such synergy has surely hindered progress in this important field. This Account describes our efforts at focusing down into this interesting subject from the viewpoint of crystal engineering, which is the synthesis and design of functional molecular solids. Mechanical properties of soft molecular crystals imply molecular movement within the solid; the type of property depends on the likelihood of such movement in relation to the applied stress, including the ability of molecules to restore themselves to their original positions when the stress is removed. Therefore, one is interested in properties such as elasticity, plasticity, and brittleness, which are linked to structural anisotropy and the degree to which a structure veers toward isotropic character. However, these matters are still by no means settled and are system dependent. While elasticity and brittleness are probably displayed by all molecular solids, the window of plasticity is perhaps the one that is most amenable to crystal engineering strategies and methods. In all this, one needs to note that mechanical properties have a kinetic component: a crystal that is elastic under slow stress application may become plastic or brittle if the same stress is applied quickly. In this context, nanoindentation studies have shown themselves to be of invaluable importance in understanding structural anisotropy. Several problems in solid state chemistry, including classical ones, such as the melting point alternation in aliphatic straight chain dicarboxylic acids and hardness modulation in solid solutions, have been understood more clearly with this technique. The way may even be open to picoindentation studies and the observation of molecular level movements. As in all types of crystal engineering, an understanding of the intermolecular interactions can lead to property oriented crystal design, and we present examples where complex properties may be deliberately turned on or off in organic crystals: one essentially fine-tunes the degree of isotropy/anisotropy by modulating interactions such as hydrogen bonding, halogen bonding, π···π interactions, and C-H···π interactions. The field is now wide open as is attested by the activities of several research groups working in the area. It is set to take off into the domains of smart materials, soft crystals, and superelasticity and a full understanding of solid state reactivity.

6.
Angew Chem Int Ed Engl ; 58(11): 3232-3234, 2019 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-30637893

RESUMO

"Scientists owe it to society to provide guidance, leadership, and above all, moral stature, so that they become role models… Both knowledge and wealth are acquired only through the pursuit of truth. This is smoothly achieved when then there is a seamless exchange of unspoken thought between science and society. …" Read more in the Guest Editorial by G. R. Desiraju.

7.
Angew Chem Int Ed Engl ; 58(35): 12027-12031, 2019 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-31267635

RESUMO

Formation of a stoichiometric quaternary cocrystal consisting of resorcinol (RES), tetramethylpyrazine (TMP), phenazine (PHE) and pyrene (PYR) is described. A closed tetrameric resorcinol-heterocycle synthon, unusual in that it has two different linker bases rather than just one, is observed in this four-component solid. The tetrameric synthon is formed by two RES molecules and the two pyridine bases TMP and PHE. The stoichiometric quaternary cocrystal grows in an epitaxial fashion on the surfaces of a RES.PHE binary cocrystal which is initially obtained from the mother liquor. By indexing the common crystal faces of the binary and quaternary cocrystals, and noting that no ternary solid is obtained, a plausible mechanism has been proposed for the formation of this rare supramolecular architecture.

8.
Angew Chem Int Ed Engl ; 58(13): 4100-4107, 2019 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-30488598

RESUMO

Crystal Engineering has traditionally dealt with molecular crystals. It is the understanding of intermolecular interactions in the context of crystal packing and in the utilization of such understanding in the design of new solids with desired physical and chemical properties. We outline here five areas which come under the umbrella of Crystal Engineering and where we feel that a proper planning of research efforts could lead to higher dividends for science together with greater returns for humankind. We touch on themes and domains where science funding and translation efforts could be directed in the current climate of a society that increasingly expects applications and utility products from science and technology. The five topics are: 1) pharmaceutical solids; 2) industrial solid state reactions; 3) mechanical properties with practical applications; 4) MOFs and COFs framework solids; 5) new materials for solar energy harvesting and advanced polymers.

9.
J Am Chem Soc ; 140(20): 6361-6373, 2018 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-29697258

RESUMO

The acid···amide dimer heterosynthon in cocrystals of aromatic acids and primary amides is identified by marker peaks in the IR spectra that are characteristic of individual N-H···O and O-H···O interactions and also of the extended synthon. The O-H···O hydrogen bond is crucial to heterodimer formation in contrast to the N-H···O bond. A combinatorial study, tuning the chemical nature of acid and amide functionalities, leads to 22 cocrystals out of 36 crystallization attempts. Four quadrants I-IV are defined based on acidity and basicity of the acid and amide components. The strong acid-strong base combination in quadrant I favors the planar acid···amide heterodimer in its eight cocrystals. Quadrant IV with its weak acid-weak base combination is the least favored for the planar heterosynthon and synthon diversity is observed in the eight cocrystals obtained. The strong-weak and weak-strong combinations in quadrants II and III are expectedly ambivalent. This exercise highlights the effect of molecular features on supramolecular behavior. Quadrant I crystals, with their propensity for the planar acid···amide heterodimer are suitable for the engineering of crystals that can be sheared. This quadrant favors the formation of elastic crystals too. The overall result is that 57% (4 in 7) of all crystals in this quadrant are deformable, compared with 14% (1 in 7) in the three other quadrants. This work is a complete crystal engineering exercise from synthon identification to a particular desired crystal packing to property selection. One can virtually anticipate the mechanical property of a putative acid···amide cocrystal from a knowledge of just the molecular structures of the constituent acid and amide molecules.

10.
J Am Chem Soc ; 140(6): 2309-2315, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29353480

RESUMO

A strategy has been developed to achieve six-component molecular solids. The first part of the protocol involves the design and development of a family of stoichiometric quaternary cocrystals. It relies on the idea that when a molecule is in two distinct crystallographic environments in a lower-order cocrystal it becomes susceptible to substitution by a new molecule at the site where it is more weakly bound, if it is enthalpically advantageous to do so. Accordingly, a binary cocrystal acts as a stepping stone to a ternary, and so on. However, the subject system ran into a synthetic dead end at the level of quaternary cocrystals, in that no further crystallographic inequivalences could be found. This necessitated the development of the second part of the protocol, which exploits the shape-size similarities of 2-chloro-, 2-bromo-, and 2-methylresorcinols (CRES, BRES, and MRES respectively) and circumvents this synthetic dead end to achieve several five-and six-component solids, wherein the fifth and sixth components are incorporated in a solid solution fashion at the site of the fourth component.

11.
Angew Chem Int Ed Engl ; 57(30): 9279-9283, 2018 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-29893027

RESUMO

Accessing the data points in the crystal structure landscape of a molecule is a challenging task, either experimentally or computationally. We have charted the crystal structure landscape of 4-bromocinnamic acid (4BCA) experimentally and computationally: experimental doping is achieved with 4-methylcinnamic acid (4MCA) to obtain new crystal structures; computational doping is performed with 4-chlorocinnamic acid (4CCA) as a model system, because of the difficulties associated in parameterizing the Br atom. The landscape of 4CCA is explored experimentally in turn, also by doping it with 4MCA, and is found to bear a close resemblance to the landscape of 4BCA, justifying the ready miscibility of these two halogenated cinnamic acids to form solid solutions without any change in crystal structure. In effect, 4MCA, 4CCA and 4BCA form a commutable group of crystal structures, which may be realized experimentally or computationally, and constitute the landscape. Unlike the results obtained by Kitaigorodskii, all but two of the multiple solid solutions obtained in the methyl-doping experiments take structures that are different from the hitherto observed crystal forms of the parent compounds. Even granted that the latter might be inherently polymorphic, this unusual observation provokes the suggestion that solid solution formation may be used to probe the crystal structure landscape. The influence of π⋅⋅⋅π interactions, weak hydrogen bonds and halogen bonds in directing the formation of these new structures is also seen.

12.
J Am Chem Soc ; 139(5): 1975-1983, 2017 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-28080045

RESUMO

A strategy is outlined for the design of hand-twisted helical crystals. The starting point in the exercise is the one-dimensional (1D) plastic crystal, 1,4-dibromobenzene, which is then changed to a 1D elastic crystal, exemplified by 4-bromophenyl 4'-chlorobenzoate, by introduction of a molecular synthon -O-CO- in lieu of the supramolecular synthon Br···Br in the precursor. The 1D elastic crystals are next modified to two-dimensional (2D) elastic crystals, of the type 4-bromophenyl 4'-nitrobenzoate where the halogen bonding and C-H···O hydrogen bonding are well-matched. Finally, varying the interaction strengths in these 2D elastic crystals gives plastic crystals with two pairs of bendable faces but without slip planes. Typical examples are 4-chlorophenyl and 4-bromophenyl 4'-nitrobenzoate. This type of 2D plasticity represents a new type of bendable crystals in which plastic behavior is seen with a fair degree of isotropic character in the crystal packing. The presence of two sets of bendable faces, generally orthogonal to each other, allows for the possibility of hand-twisting of the crystals to give grossly helical morphologies. Accordingly, we propose the name hand-twisted helical crystals for these substances.

13.
Chemistry ; 23(20): 4936-4943, 2017 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-28224668

RESUMO

Designing elastic crystals is a difficult task and is of relevance in potential applications from materials to biology. Here, multi-step crystal engineering based on σ-hole and π-hole synthon mimicry is performed to obtain binary organic molecular crystals with a high degree of flexibility. A structural model is proposed based only on σ-hole-oriented type-II halogen bonds with their characteristic orthogonal geometry. These σ-hole contacts are then partly replaced by chemically and geometrically similar π-hole synthons to obtain new crystals in the second step. In the final step, all the σ-hole interactions are replaced with π-hole interactions and elastic crystals of non-halogenated compounds are obtained. All the crystals obtained according to our protocols are found to be elastic. When crystals that do not conform to the desired structure type appeared, they were found to be brittle. This underlines the role of orthogonal-type interactions, whether they are of the σ-hole or π-hole type, in achieving elasticity. This is the first report in which π-hole interactions are used for property engineering. This example may illustrate a new generation of crystal engineering in which a particular property is associated more with topological rather than chemical attributes, although the significance of the latter cannot be completely excluded.

14.
Annu Rev Phys Chem ; 66: 21-42, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25422850

RESUMO

The notion of structure is central to the subject of chemistry. This review traces the development of the idea of crystal structure since the time when a crystal structure could be determined from a three-dimensional diffraction pattern and assesses the feasibility of computationally predicting an unknown crystal structure of a given molecule. Crystal structure prediction is of considerable fundamental and applied importance, and its successful execution is by no means a solved problem. The ease of crystal structure determination today has resulted in the availability of large numbers of crystal structures of higher-energy polymorphs and pseudopolymorphs. These structural libraries lead to the concept of a crystal structure landscape. A crystal structure of a compound may accordingly be taken as a data point in such a landscape.

15.
Mol Pharm ; 13(10): 3590-3594, 2016 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-27580175

RESUMO

A new multicomponent solid consisting of an antibacterial (norfloxacin) and an antimicrobial (sulfathiazole) was made and characterized with single crystal X-ray diffraction, PXRD, FTIR, and DSC. The title salt shows enhanced solubility in different pH buffers and improved diffusion as well as release and inhibition of bacterial and fungal species relative to the parent drugs. The enhanced in vitro biological properties of the drug-drug salt hydrate may be attributed to the higher extent of its supersaturation with respect to the individual components, which leads to higher diffusion rates.


Assuntos
Antibacterianos/química , Norfloxacino/química , Sulfatiazóis/química , Varredura Diferencial de Calorimetria , Cristalização , Cristalografia por Raios X , Solubilidade , Sulfatiazol
16.
J Am Chem Soc ; 137(31): 9912-21, 2015 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-26192986

RESUMO

An elastic organic crystal, 2,6-dichlorobenzylidine-4-fluoro-3-nitroaniline (DFNA), which also shows thermosalient behavior, is studied. The presence of these two distinct properties in the same crystal is unusual and unprecedented because they follow respectively from isotropy and anisotropy in the crystal packing. Therefore, while both properties lead from the crystal structure, the mechanisms for bending and thermosalience are quite independent of one another. Crystals of the low-temperature (α) form of the title compound are bent easily without any signs of fracture with the application of deforming stress, and this bending is within the elastic limit. The crystal structure of the α-form was determined (P21/c, Z = 4, a = 3.927(7) Å, b = 21.98(4) Å, c = 15.32(3) Å). There is an irreversible phase transition at 138 °C of this form to the high-temperature ß-form followed by melting at 140 °C. Variable-temperature X-ray powder diffraction was used to investigate the structural changes across the phase transition and, along with an FTIR study, establishes the structure of the ß-form. A possible rationale for strain build-up is given. Thermosalient behavior arises from anisotropic changes in the three unit cell parameters across the phase transition, notably an increase in the b axis parameter from 21.98 to 22.30 Å. A rationale is provided for the existence of both elasticity and thermosalience in the same crystal. FTIR studies across the phase transition reveal important mechanistic insights: (i) increased π···π repulsions along [100] lead to expansion along the a axis; (ii) change in alignment of C-Cl and NO2 groups result from density changes; and (iii) competition between short-range repulsive (π···π) interactions and long-range attractive dipolar interactions (C-Cl and NO2) could lie at the origin of the existence of two distinctive properties.

17.
J Am Chem Soc ; 137(5): 1794-7, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25634429

RESUMO

In the context of processing of molecular solids, especially pharmaceuticals, hardness is an important property that often determines the manufacturing steps employed. Through nanoindentation studies on a series of omeprazole polymorphs, in which the proportions of the 5- and 6-methoxy tautomers vary systematically, we demonstrate that solid-solution strengthening can be effectively employed to engineer the hardness of organic solids. High hardness can be attained by increasing lattice resistance to shear sliding of molecular layers during plastic deformation.

18.
Acc Chem Res ; 47(8): 2514-24, 2014 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-25134974

RESUMO

The halogen bond is an attractive interaction in which an electrophilic halogen atom approaches a negatively polarized species. Short halogen atom contacts in crystals have been known for around 50 years. Such contacts are found in two varieties: type I, which is symmetrical, and type II, which is bent. Both are influenced by geometric and chemical considerations. Our research group has been using halogen atom interactions as design elements in crystal engineering, for nearly 30 years. These interactions include halogen···halogen interactions (X···X) and halogen···heteroatom interactions (X···B). Many X···X and almost all X···B contacts can be classified as halogen bonds. In this Account, we illustrate examples of crystal engineering where one can build up from previous knowledge with a focus that is provided by the modern definition of the halogen bond. We also comment on the similarities and differences between halogen bonds and hydrogen bonds. These interactions are similar because the protagonist atoms-halogen and hydrogen-are both electrophilic in nature. The interactions are distinctive because the size of a halogen atom is of consequence when compared with the atomic sizes of, for example, C, N, and O, unlike that of a hydrogen atom. Conclusions may be drawn pertaining to the nature of X···X interactions from the Cambridge Structural Database (CSD). There is a clear geometric and chemical distinction between type I and type II, with only type II being halogen bonds. Cl/Br isostructurality is explained based on a geometric model. In parallel, experimental studies on 3,4-dichlorophenol and its congeners shed light on the nature of halogen···halogen interactions and reveal the chemical difference between Cl and Br. Variable temperature studies also show differences between type I and type II contacts. In terms of crystal design, halogen bonds offer a unique opportunity in the strength, atom size and interaction gradation; this may be used in the design of ternary cocrystals. Structural modularity in which an entire crystal structure is defined as a combination of modules is rationalized on the basis of the intermediate strength of a halogen bond. The specific directionality of the halogen bond makes it a good tool to achieve orthogonality in molecular crystals. Mechanical properties can be tuned systematically by varying these orthogonally oriented halogen···halogen interactions. In a further development, halogen bonds are shown to play a systematic role in organization of LSAMs (long range synthon aufbau module), which are bigger structural units containing multiple synthons. With a formal definition in place, this may be the right time to look at differences between halogen bonds and hydrogen bonds and exploit them in more subtle ways in crystal engineering.

19.
Mol Pharm ; 12(3): 889-97, 2015 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-25587626

RESUMO

Crystals of voriconazole, an antifungal drug, are soft in nature, and this is disadvantageous during compaction studies where pressure is applied on the solid. Crystal engineering is used to make cocrystals and salts with modified mechanical properties (e.g., hardness). Cocrystals with biologically safe coformers such as fumaric acid, 4-hydroxybenzoic acid, and 4-aminobenzoic acid and salts with hydrochloric acid and oxalic acid are prepared through solvent assisted grinding. The presence (salt) or absence (cocrystal) of proton transfer in these multicomponent crystals is unambiguously confirmed with single crystal X-ray diffraction. All the cocrystals have 1:1 stoichiometry, whereas salts exhibit variable stoichiometries such as HCl salt (1:2) and oxalate salts (1:1.5 and 1:1). The nanoindentation technique was applied on single crystals of the salts and cocrystals. The salts exhibit better hardness than the drug and cocrystals in the order salts ≫ drug > cocrystals. The molecular origin of this mechanical modulation is explained on the basis of slip planes in the crystal structure and relative orientations of the molecules with respect to the nanoindentation direction. The hydrochloride salt is the hardest solid in this family. This may be useful for tableting of the drug during formulation and in drug development.


Assuntos
Voriconazol/química , Antifúngicos/administração & dosagem , Antifúngicos/química , Fenômenos Biomecânicos , Biofarmácia , Química Farmacêutica , Cristalização , Módulo de Elasticidade , Dureza , Humanos , Ligação de Hidrogênio , Modelos Moleculares , Conformação Molecular , Sais/química , Comprimidos , Voriconazol/administração & dosagem
20.
Mol Pharm ; 12(5): 1615-22, 2015 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-25800383

RESUMO

Hydrochlorothiazide (HCT) is a diuretic and a BCS class IV drug with low solubility and low permeability, exhibiting poor oral absorption. The present study attempts to improve the physicochemical properties of the drug using a crystal engineering approach with cocrystals. Such multicomponent crystals of HCT with nicotinic acid (NIC), nicotinamide (NCT), 4-aminobenzoic acid (PABA), succinamide (SAM), and resorcinol (RES) were prepared using liquid-assisted grinding, and their solubilities in pH 7.4 buffer were evaluated. Diffusion and membrane permeability were studied using a Franz diffusion cell. Except for the SAM and NIC cocrystals, all other binary systems exhibited improved solubility. All of the cocrystals showed improved diffusion/membrane permeability compared to that of HCT with the exception of the SAM cocrystal. When the solubility was high, as in the case of PABA, NCT, and RES cocrystals, the flux/permeability dropped slightly. This is in agreement with the expected interplay between solubility and permeability. Improved solubility/permeability is attributed to new drug-coformer interactions. Cocrystals of SAM, however, showed poor solubility and flux. This cocrystal contains a primary sulfonamide dimer synthon similar to that of HCT polymorphs, which may be a reason for its unusual behavior. Hirshfeld surface analysis was carried out in all cases to determine whether a correlation exists between cocrystal permeability and drug-coformer interactions.


Assuntos
Hidroclorotiazida/química , Ácido 4-Aminobenzoico/química , Amidas/química , Cristalização , Difusão , Niacina/química , Niacinamida/química , Permeabilidade , Resorcinóis/química , Solubilidade , Succinatos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA