Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
PLoS Genet ; 14(8): e1007550, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30067756

RESUMO

Hereditary spastic paraplegias (HSPs) are clinically and genetically heterogeneous human neurodegenerative diseases. Amongst the identified genetic causes, mutations in genes encoding motor proteins such as kinesins have been involved in various HSP clinical isoforms. Mutations in KIF1C are responsible for autosomal recessive spastic paraplegia type 58 (SPG58) and spastic ataxia 2 (SPAX2). Bovines also develop neurodegenerative diseases, some of them having a genetic aetiology. Bovine progressive ataxia was first described in the Charolais breed in the early 1970s in England and further cases in this breed were subsequently reported worldwide. We can now report that progressive ataxia of Charolais cattle results from a homozygous single nucleotide polymorphism in the coding region of the KIF1C gene. In this study, we show that the mutation at the heterozygous state is associated with a better score for muscular development, explaining its balancing selection for several decades, and the resulting high frequency (13%) of the allele in the French Charolais breed. We demonstrate that the KIF1C bovine mutation leads to a functional knock-out, therefore mimicking mutations in humans affected by SPG58/SPAX2. The functional consequences of KIF1C loss of function in cattle were also histologically reevaluated. We showed by an immunochemistry approach that demyelinating plaques were due to altered oligodendrocyte membrane protrusion, and we highlight an abnormal accumulation of actin in the core of demyelinating plaques, which is normally concentrated at the leading edge of oligodendrocytes during axon wrapping. We also observed that the lesions were associated with abnormal extension of paranodal sections. Moreover, this model highlights the role of KIF1C protein in preserving the structural integrity and function of myelin, since the clinical signs and lesions arise in young-adult Charolais cattle. Finally, this model provides useful information for SPG58/SPAX2 disease and other demyelinating lesions.


Assuntos
Doenças dos Bovinos/genética , Bovinos/genética , Cinesinas/metabolismo , Bainha de Mielina/metabolismo , Degenerações Espinocerebelares/veterinária , Sequência de Aminoácidos , Animais , Doenças dos Bovinos/diagnóstico , Modelos Animais de Doenças , Feminino , Heterozigoto , Homozigoto , Deficiência Intelectual/diagnóstico , Deficiência Intelectual/genética , Deficiência Intelectual/veterinária , Cinesinas/genética , Masculino , Espasticidade Muscular/diagnóstico , Espasticidade Muscular/genética , Espasticidade Muscular/veterinária , Mutação de Sentido Incorreto , Atrofia Óptica/diagnóstico , Atrofia Óptica/genética , Atrofia Óptica/veterinária , Polimorfismo de Nucleotídeo Único , Paraplegia Espástica Hereditária/diagnóstico , Paraplegia Espástica Hereditária/genética , Paraplegia Espástica Hereditária/veterinária , Ataxias Espinocerebelares/diagnóstico , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/veterinária , Degenerações Espinocerebelares/diagnóstico , Degenerações Espinocerebelares/genética , Sequenciamento Completo do Genoma
2.
Glia ; 68(9): 1891-1909, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32119167

RESUMO

In vertebrates, fast saltatory conduction along myelinated axons relies on the node of Ranvier. How nodes assemble on CNS neurons is not yet fully understood. We previously described that node-like clusters can form prior to myelin deposition in hippocampal GABAergic neurons and are associated with increased conduction velocity. Here, we used a live imaging approach to characterize the intrinsic mechanisms underlying the assembly of these clusters prior to myelination. We first demonstrated that their components can partially preassemble prior to membrane targeting and determined the molecular motors involved in their trafficking. We then demonstrated the key role of the protein ß2Nav for node-like clustering initiation. We further assessed the fate of these clusters when myelination proceeds. Our results shed light on the intrinsic mechanisms involved in node-like clustering prior to myelination and unravel a potential role of these clusters in node of Ranvier formation and in guiding myelination onset.


Assuntos
Axônios , Neurônios GABAérgicos , Animais , Sistema Nervoso Central , Análise por Conglomerados , Bainha de Mielina , Nós Neurofibrosos
3.
Glia ; 67(12): 2248-2263, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31328333

RESUMO

The fast and reliable propagation of action potentials along myelinated fibers relies on the clustering of voltage-gated sodium channels at nodes of Ranvier. Axo-glial communication is required for assembly of nodal proteins in the central nervous system, yet the underlying mechanisms remain poorly understood. Oligodendrocytes are known to support node of Ranvier assembly through paranodal junction formation. In addition, the formation of early nodal protein clusters (or prenodes) along axons prior to myelination has been reported, and can be induced by oligodendrocyte conditioned medium (OCM). Our recent work on cultured hippocampal neurons showed that OCM-induced prenodes are associated with an increased conduction velocity (Freeman et al., 2015). We here unravel the nature of the oligodendroglial secreted factors. Mass spectrometry analysis of OCM identified several candidate proteins (i.e., Contactin-1, ChL1, NrCAM, Noelin2, RPTP/Phosphacan, and Tenascin-R). We show that Contactin-1 combined with RPTP/Phosphacan or Tenascin-R induces clusters of nodal proteins along hippocampal GABAergic axons. Furthermore, Contactin-1-immunodepleted OCM or OCM from Cntn1-null mice display significantly reduced clustering activity, that is restored by addition of soluble Contactin-1. Altogether, our results identify Contactin-1 secreted by oligodendrocytes as a novel factor that may influence early steps of nodal sodium channel cluster formation along specific axon populations.


Assuntos
Contactina 1/metabolismo , Hipocampo/metabolismo , Proteína Nodal/metabolismo , Oligodendroglia/metabolismo , Animais , Células Cultivadas , Sistema Nervoso Central/citologia , Sistema Nervoso Central/metabolismo , Contactina 1/genética , Neurônios GABAérgicos/metabolismo , Hipocampo/citologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Proteína Nodal/genética , Ligação Proteica/fisiologia , Ratos , Ratos Sprague-Dawley , Ratos Wistar
4.
Proc Natl Acad Sci U S A ; 112(3): E321-8, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25561543

RESUMO

High-density accumulation of voltage-gated sodium (Nav) channels at nodes of Ranvier ensures rapid saltatory conduction along myelinated axons. To gain insight into mechanisms of node assembly in the CNS, we focused on early steps of nodal protein clustering. We show in hippocampal cultures that prenodes (i.e., clusters of Nav channels colocalizing with the scaffold protein ankyrinG and nodal cell adhesion molecules) are detected before myelin deposition along axons. These clusters can be induced on purified neurons by addition of oligodendroglial-secreted factor(s), whereas ankyrinG silencing prevents their formation. The Nav isoforms Nav1.1, Nav1.2, and Nav1.6 are detected at prenodes, with Nav1.6 progressively replacing Nav1.2 over time in hippocampal neurons cultured with oligodendrocytes and astrocytes. However, the oligodendrocyte-secreted factor(s) can induce the clustering of Nav1.1 and Nav1.2 but not of Nav1.6 on purified neurons. We observed that prenodes are restricted to GABAergic neurons, whereas clustering of nodal proteins only occurs concomitantly with myelin ensheathment on pyramidal neurons, implying separate mechanisms of assembly among different neuronal subpopulations. To address the functional significance of these early clusters, we used single-axon electrophysiological recordings in vitro and showed that prenode formation is sufficient to accelerate the speed of axonal conduction before myelination. Finally, we provide evidence that prenodal clusters are also detected in vivo before myelination, further strengthening their physiological relevance.


Assuntos
Bainha de Mielina/metabolismo , Animais , Hipocampo/metabolismo , Camundongos , Ratos
5.
Cell Mol Life Sci ; 73(4): 723-35, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26514731

RESUMO

The efficient propagation of action potentials along nervous fibers is necessary for animals to interact with the environment with timeliness and precision. Myelination of axons is an essential step to ensure fast action potential propagation by saltatory conduction, a process that requires highly concentrated voltage-gated sodium channels at the nodes of Ranvier. Recent studies suggest that the clustering of sodium channels can influence axonal impulse conduction in both myelinated and unmyelinated fibers, which could have major implications in disease, particularly demyelinating pathology. This comprehensive review summarizes the mechanisms governing the clustering of sodium channels at the peripheral and central nervous system nodes and the specific roles of their clustering in influencing action potential conduction. We further highlight the classical biophysical parameters implicated in conduction timing, followed by a detailed discussion on how sodium channel clustering along unmyelinated axons can impact axonal impulse conduction in both physiological and pathological contexts.


Assuntos
Potenciais de Ação , Axônios/metabolismo , Nós Neurofibrosos/metabolismo , Canais de Sódio Disparados por Voltagem/metabolismo , Animais , Axônios/patologia , Doenças Desmielinizantes/metabolismo , Doenças Desmielinizantes/patologia , Humanos , Nós Neurofibrosos/patologia
6.
J Neurosci ; 35(5): 2246-54, 2015 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-25653379

RESUMO

Rapid nerve conduction in myelinated nerves requires the clustering of voltage-gated sodium channels at nodes of Ranvier. The Neurofascin (Nfasc) gene has a unique role in node formation because it encodes glial and neuronal isoforms of neurofascin (Nfasc155 and Nfasc186, respectively) with key functions in assembling the nodal macromolecular complex. A third neurofascin, Nfasc140, has also been described; however, neither the cellular origin nor function of this isoform was known. Here we show that Nfasc140 is a neuronal protein strongly expressed during mouse embryonic development. Expression of Nfasc140 persists but declines during the initial stages of node formation, in contrast to Nfasc155 and Nfasc186, which increase. Nevertheless, Nfasc140, like Nfasc186, can cluster voltage-gated sodium channels (Nav) at the developing node of Ranvier and can restore electrophysiological function independently of Nfasc155 and Nfasc186. This suggests that Nfasc140 complements the function of Nfasc155 and Nfasc186 in initial stages of the assembly and stabilization of the nodal complex. Further, Nfasc140 is reexpressed in demyelinated white matter lesions of postmortem brain tissue from human subjects with multiple sclerosis. This expands the critical role of the Nfasc gene in the function of myelinated axons and reveals further redundancy in the mechanisms required for the formation of this crucial structure in the vertebrate nervous system.


Assuntos
Moléculas de Adesão Celular/metabolismo , Fatores de Crescimento Neural/metabolismo , Nós Neurofibrosos/metabolismo , Rombencéfalo/metabolismo , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Axônios/metabolismo , Estudos de Casos e Controles , Moléculas de Adesão Celular/genética , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Esclerose Múltipla/metabolismo , Fatores de Crescimento Neural/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Rombencéfalo/embriologia , Canais de Sódio Disparados por Voltagem/metabolismo
7.
J Neurosci ; 34(15): 5083-8, 2014 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-24719087

RESUMO

Fast, saltatory conduction in myelinated nerves requires the clustering of voltage-gated sodium channels (Nav) at nodes of Ranvier in a nodal complex. The Neurofascin (Nfasc) gene encodes neuronal Neurofascin 186 (Nfasc186) at the node and glial Neurofascin 155 at the paranode, and these proteins play a key role in node assembly. However, their role in the maintenance and stability of the node is less well understood. Here we show that by inducible ablation of Nfasc in neurons in adult mice, Nfasc186 expression is reduced by >99% and 94% at PNS and CNS nodes, respectively. Gliomedin and NrCAM at PNS and brevican at CNS nodes are largely lost with neuronal neurofascin; however, Nav at nodes of Ranvier persist, albeit with ∼40% reduction in expression levels. ßIV Spectrin, ankyrin G, and, to a lesser extent, the ß1 subunit of the sodium channel, are less affected at the PNS node than in the CNS. Nevertheless, there is a 38% reduction in PNS conduction velocity. Loss of Nfasc186 provokes CNS paranodal disorganization, but this does not contribute to loss of Nav. These results show that Nav at PNS nodes are still maintained in a nodal complex when neuronal neurofascin is depleted, whereas the retention of nodal Nav in the CNS, despite more extensive dissolution of the complex, suggests a supportive role for the partially disrupted paranodal axoglial junction in selectively maintaining Nav at the CNS node.


Assuntos
Moléculas de Adesão Celular/genética , Deleção de Genes , Fatores de Crescimento Neural/genética , Nós Neurofibrosos/metabolismo , Medula Espinal/metabolismo , Animais , Brevicam/metabolismo , Moléculas de Adesão Celular/metabolismo , Moléculas de Adesão Celular Neuronais/metabolismo , Feminino , Masculino , Camundongos , Fatores de Crescimento Neural/metabolismo , Neuroglia/metabolismo , Transporte Proteico , Medula Espinal/citologia , Canais de Sódio Disparados por Voltagem/metabolismo
8.
J Neurosci ; 34(38): 12904-18, 2014 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-25232125

RESUMO

Postnatal synapse elimination plays a critical role in sculpting and refining neural connectivity throughout the central and peripheral nervous systems, including the removal of supernumerary axonal inputs from neuromuscular junctions (NMJs). Here, we reveal a novel and important role for myelinating glia in regulating synapse elimination at the mouse NMJ, where loss of a single glial cell protein, the glial isoform of neurofascin (Nfasc155), was sufficient to disrupt postnatal remodeling of synaptic circuitry. Neuromuscular synapses were formed normally in mice lacking Nfasc155, including the establishment of robust neuromuscular synaptic transmission. However, loss of Nfasc155 was sufficient to cause a robust delay in postnatal synapse elimination at the NMJ across all muscle groups examined. Nfasc155 regulated neuronal remodeling independently of its canonical role in forming paranodal axo-glial junctions, as synapse elimination occurred normally in mice lacking the axonal paranodal protein Caspr. Rather, high-resolution proteomic screens revealed that loss of Nfasc155 from glial cells was sufficient to disrupt neuronal cytoskeletal organization and trafficking pathways, resulting in reduced levels of neurofilament light (NF-L) protein in distal axons and motor nerve terminals. Mice lacking NF-L recapitulated the delayed synapse elimination phenotype observed in mice lacking Nfasc155, suggesting that glial cells regulate synapse elimination, at least in part, through modulation of the axonal cytoskeleton. Together, our study reveals a glial cell-dependent pathway regulating the sculpting of neuronal connectivity and synaptic circuitry in the peripheral nervous system.


Assuntos
Moléculas de Adesão Celular/deficiência , Moléculas de Adesão Celular/fisiologia , Fatores de Crescimento Neural/deficiência , Fatores de Crescimento Neural/fisiologia , Junção Neuromuscular/fisiologia , Sinapses/fisiologia , Animais , Axônios/metabolismo , Moléculas de Adesão Celular/genética , Moléculas de Adesão Celular Neuronais/genética , Moléculas de Adesão Celular Neuronais/fisiologia , Citoesqueleto/metabolismo , Camundongos , Camundongos Knockout , Placa Motora/crescimento & desenvolvimento , Neurônios Motores/metabolismo , Fatores de Crescimento Neural/genética , Condução Nervosa/genética , Condução Nervosa/fisiologia , Proteínas de Neurofilamentos/metabolismo , Neuroglia/metabolismo , Junção Neuromuscular/crescimento & desenvolvimento , Isoformas de Proteínas/genética , Proteômica , Células de Schwann/metabolismo , Sinapses/genética , Transmissão Sináptica/fisiologia
9.
J Neurosci ; 32(37): 12885-95, 2012 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-22973012

RESUMO

Live imaging studies of the processes of demyelination and remyelination have so far been technically limited in mammals. We have thus generated a Xenopus laevis transgenic line allowing live imaging and conditional ablation of myelinating oligodendrocytes throughout the CNS. In these transgenic pMBP-eGFP-NTR tadpoles the myelin basic protein (MBP) regulatory sequences, specific to mature oligodendrocytes, are used to drive expression of an eGFP (enhanced green fluorescent protein) reporter fused to the Escherichia coli nitroreductase (NTR) selection enzyme. This enzyme converts the innocuous prodrug metronidazole (MTZ) to a cytotoxin. Using two-photon imaging in vivo, we show that pMBP-eGFP-NTR tadpoles display a graded oligodendrocyte ablation in response to MTZ, which depends on the exposure time to MTZ. MTZ-induced cell death was restricted to oligodendrocytes, without detectable axonal damage. After cessation of MTZ treatment, remyelination proceeded spontaneously, but was strongly accelerated by retinoic acid. Altogether, these features establish the Xenopus pMBP-eGFP-NTR line as a novel in vivo model for the study of demyelination/remyelination processes and for large-scale screens of therapeutic agents promoting myelin repair.


Assuntos
Doenças Desmielinizantes/patologia , Doenças Desmielinizantes/fisiopatologia , Modelos Animais de Doenças , Microscopia de Fluorescência por Excitação Multifotônica/métodos , Regeneração Nervosa/fisiologia , Xenopus laevis/anatomia & histologia , Xenopus laevis/fisiologia , Animais , Humanos
10.
J Neurosci ; 31(49): 18185-94, 2011 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-22159130

RESUMO

Myelinated axons have a distinct protein architecture essential for action potential propagation, neuronal communication, and maintaining cognitive function. Damage to myelinated axons, associated with cerebral hypoperfusion, contributes to age-related cognitive decline. We sought to determine early alterations in the protein architecture of myelinated axons and potential mechanisms after hypoperfusion. Using a mouse model of hypoperfusion, we assessed changes in proteins critical to the maintenance of paranodes, nodes of Ranvier, axon-glial integrity, axons, and myelin by confocal laser scanning microscopy. As early as 3 d after hypoperfusion, the paranodal septate-like junctions were damaged. This was marked by a progressive reduction of paranodal Neurofascin signal and a loss of septate-like junctions. Concurrent with paranodal disruption, there was a significant increase in nodal length, identified by Nav1.6 staining, with hypoperfusion. Disruption of axon-glial integrity was also determined after hypoperfusion by changes in the spatial distribution of myelin-associated glycoprotein staining. These nodal/paranodal changes were more pronounced after 1 month of hypoperfusion. In contrast, the nodal anchoring proteins AnkyrinG and Neurofascin 186 were unchanged and there were no overt changes in axonal and myelin integrity with hypoperfusion. A microarray analysis of white matter samples indicated that there were significant alterations in 129 genes. Subsequent analysis indicated alterations in biological pathways, including inflammatory responses, cytokine-cytokine receptor interactions, blood vessel development, and cell proliferation processes. Our results demonstrate that hypoperfusion leads to a rapid disruption of key proteins critical to the stability of the axon-glial connection that is mediated by a diversity of molecular events.


Assuntos
Axônios/patologia , Regulação da Expressão Gênica/fisiologia , Hipóxia-Isquemia Encefálica/patologia , Neuroglia/patologia , Neurônios/patologia , Fatores Etários , Animais , Anquirinas/metabolismo , Moléculas de Adesão Celular , Moléculas de Adesão Celular Neuronais , Doença Crônica , Corpo Caloso/metabolismo , Corpo Caloso/patologia , Modelos Animais de Doenças , Tomografia com Microscopia Eletrônica/métodos , Perfilação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Confocal , Proteína Básica da Mielina/metabolismo , Glicoproteína Associada a Mielina/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.6 , Fibras Nervosas Mielinizadas/metabolismo , Fatores de Crescimento Neural , Proteínas do Tecido Nervoso/metabolismo , Proteínas de Neurofilamentos/metabolismo , Neuroglia/metabolismo , Neurônios/citologia , Análise de Sequência com Séries de Oligonucleotídeos , Nervo Óptico/metabolismo , Nervo Óptico/patologia , Nervo Óptico/ultraestrutura , Nós Neurofibrosos/metabolismo , Nós Neurofibrosos/patologia , Transdução de Sinais/fisiologia , Canais de Sódio
11.
Mult Scler ; 18(2): 133-7, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22217583

RESUMO

How axonal damage, a major prognostic factor of multiple sclerosis disability progression, is induced, is likely to be multifactorial. Whereas axonal injury has been identified as a consequence of myelin loss, the possibility of an additional direct damage is also suggested. In this context, recent data have highlighted the nodal and perinodal axonal domains of the myelinated neurons as potential targets of the disease process, opening new perspectives in multiple sclerosis pathophysiology.


Assuntos
Axônios/patologia , Esclerose Múltipla/patologia , Degeneração Neural/patologia , Nós Neurofibrosos/patologia , Animais , Autoimunidade/imunologia , Axônios/imunologia , Humanos , Esclerose Múltipla/imunologia , Degeneração Neural/imunologia , Nós Neurofibrosos/imunologia
12.
Life (Basel) ; 11(3)2021 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-33799653

RESUMO

Multiple sclerosis (MS) is a complex central nervous system inflammatory disease leading to demyelination and associated functional deficits. Though endogenous remyelination exists, it is only partial and, with time, patients can enter a progressive phase of the disease, with neurodegeneration as a hallmark. Though major therapeutic advances have been made, with immunotherapies reducing relapse rate during the inflammatory phase of MS, there is presently no therapy available which significantly impacts disease progression. Remyelination has been shown to favor neuroprotection, and it is thus of major importance to better understand remyelination mechanisms in order to promote them and hence preserve neurons. A crucial point is how this process is regulated through the neuronal crosstalk with the oligodendroglial lineage. In this review, we present the current knowledge on neuron interaction with the oligodendroglial lineage, in physiological context as well as in MS and its experimental models. We further discuss the therapeutic possibilities resulting from this research field, which might allow to support remyelination and neuroprotection and thus limit MS progression.

13.
Front Cell Neurosci ; 14: 42, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32180708

RESUMO

The plasticity of the central nervous system (CNS) in response to neuronal activity has been suggested as early as 1894 by Cajal (1894). CNS plasticity has first been studied with a focus on neuronal structures. However, in the last decade, myelin plasticity has been unraveled as an adaptive mechanism of importance, in addition to the previously described processes of myelin repair. Indeed, it is now clear that myelin remodeling occurs along with life and adapts to the activity of neuronal networks. Until now, it has been considered as a two-part dialog between the neuron and the oligodendroglial lineage. However, other glial cell types might be at play in myelin plasticity. In the present review, we first summarize the key structural parameters for myelination, we then describe how neuronal activity modulates myelination and finally discuss how other glial cells could participate in myelinic adaptivity.

14.
Nat Rev Neurol ; 16(8): 426-439, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32651566

RESUMO

Saltatory conduction of action potentials along myelinated axons depends on the nodes of Ranvier - small unmyelinated axonal domains where voltage-gated sodium channels are concentrated. Our knowledge of the complex molecular composition of these axonal domains continues to accumulate, although the mechanisms of nodal assembly, which have been elucidated in the PNS, remain only partially understood in the CNS. Besides the key role of the nodes in accelerating conduction, nodal variations are thought to allow the fine tuning of axonal conduction speed to meet information processing needs. In addition, through their multiple glial contacts, nodes seem to be important for neuron-glia interactions. As we highlight in this Review, the disorganization of axonal domains has been implicated in the pathophysiology of various neurological diseases. In multiple sclerosis, for example, nodal and perinodal disruption following demyelination, with subsequent changes in ion channel distribution, leads to altered axonal conduction and integrity. The nodal clusters regenerate concurrently with but also prior to remyelination, allowing the restoration of axonal conduction. In this article, we review current knowledge of the organization and function of nodes of Ranvier in the CNS. We go on to discuss dynamic changes in the nodes during demyelination and remyelination, highlighting the impact of these changes on neuronal physiology in health and disease as well as the associated therapeutic implications.


Assuntos
Doenças do Sistema Nervoso Central/fisiopatologia , Sistema Nervoso Central/crescimento & desenvolvimento , Condução Nervosa/fisiologia , Neuroproteção/fisiologia , Nós Neurofibrosos/fisiologia , Animais , Axônios/patologia , Axônios/fisiologia , Sistema Nervoso Central/patologia , Doenças do Sistema Nervoso Central/patologia , Humanos , Neuroglia/patologia , Neuroglia/fisiologia , Neurônios/patologia , Neurônios/fisiologia , Nós Neurofibrosos/patologia
15.
J Neurosci ; 28(23): 5891-900, 2008 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-18524893

RESUMO

Krox20/Egr2 is a zinc finger transcription factor that plays essential roles in several developmental processes, including peripheral nervous system myelination by Schwann cells, where it acts as a master gene regulator. Krox20 is known to interact with cofactors of the Nab family and a mutation affecting isoleucine 268, which prevents this interaction, has been shown to result in congenital hypomyelinating neuropathy in humans. To further investigate the role of this interaction, we have introduced such a mutation, Krox20(I268F), in the mouse germ line. Clinical, immunohistochemical, and ultrastructural analyses of the homozygous mutants reveal that they develop a severe hypomyelination phenotype that mimics the human syndrome. Furthermore, a time-course analysis of the disease indicates that it follows a biphasic evolution, the hypomyelination phase being followed by a dramatic demyelination. Although for the regulation of most analyzed Krox20 target genes the mutation behaves as a loss of function, this is not the case for a few of them. This differential effect indicates that the molecular function of the Krox20-Nab interaction is target dependent and might explain the degradation of the residual myelin, because of imbalances in its composition. In conclusion, this work provides a novel and useful model for severe human peripheral neuropathies.


Assuntos
Substituição de Aminoácidos/genética , Proteína 2 de Resposta de Crescimento Precoce/genética , Proteínas de Neoplasias/genética , Doenças do Sistema Nervoso Periférico/genética , Proteínas Repressoras/genética , Animais , Células COS , Células Cultivadas , Chlorocebus aethiops , Proteína 2 de Resposta de Crescimento Precoce/metabolismo , Feminino , Masculino , Camundongos , Camundongos Mutantes , Proteínas de Neoplasias/metabolismo , Fibras Nervosas Mielinizadas/patologia , Fibras Nervosas Mielinizadas/fisiologia , Doenças do Sistema Nervoso Periférico/metabolismo , Doenças do Sistema Nervoso Periférico/patologia , Ligação Proteica/genética , Proteínas Repressoras/metabolismo , Fatores de Tempo
16.
J Vis Exp ; (145)2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30958468

RESUMO

In the nervous system, myelin is a complex membrane structure generated by myelinating glial cells, which ensheathes axons and facilitates fast electrical conduction. Myelin alteration has been shown to occur in various neurological diseases, where it is associated with functional deficits. Here, we provide a detailed description of an ex vivo model consisting of mouse organotypic cerebellar slices, which can be maintained in culture for several weeks and further be labeled to visualize myelin.


Assuntos
Cerebelo/citologia , Bainha de Mielina/metabolismo , Técnicas de Cultura de Órgãos/métodos , Coloração e Rotulagem , Animais , Células Cultivadas , Camundongos Endogâmicos C57BL
17.
Neuron ; 69(5): 945-56, 2011 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-21382554

RESUMO

The axon initial segment (AIS) is critical for the initiation and propagation of action potentials. Assembly of the AIS requires interactions between scaffolding molecules and voltage-gated sodium channels, but the molecular mechanisms that stabilize the AIS are poorly understood. The neuronal isoform of Neurofascin, Nfasc186, clusters voltage-gated sodium channels at nodes of Ranvier in myelinated nerves: here, we investigate its role in AIS assembly and stabilization. Inactivation of the Nfasc gene in cerebellar Purkinje cells of adult mice causes rapid loss of Nfasc186 from the AIS but not from nodes of Ranvier. This causes AIS disintegration, impairment of motor learning and the abolition of the spontaneous tonic discharge typical of Purkinje cells. Nevertheless, action potentials with a modified waveform can still be evoked and basic motor abilities remain intact. We propose that Nfasc186 optimizes communication between mature neurons by anchoring the key elements of the adult AIS complex.


Assuntos
Potenciais de Ação/fisiologia , Axônios/fisiologia , Moléculas de Adesão Celular/metabolismo , Fatores de Crescimento Neural/metabolismo , Neurônios/fisiologia , Nós Neurofibrosos/fisiologia , Animais , Moléculas de Adesão Celular/genética , Eletrofisiologia , Camundongos , Camundongos Transgênicos , Fatores de Crescimento Neural/genética , Canais de Sódio/fisiologia
18.
J Biol Chem ; 284(16): 10831-40, 2009 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-19218566

RESUMO

The zinc finger transcription factor Krox20 plays an essential role in the vertebrate hindbrain segmentation process. It positively or negatively controls a large variety of other regulatory genes, coordinating delimitation of segmental territories, specification of their identity, and maintenance of their integrity. We have investigated the molecular mechanisms of Krox20 transcriptional control by performing a detailed structure-function analysis of the protein in the developing chick hindbrain. This revealed an unsuspected diversity in the modes of action of a transcription factor in a single tissue, since regulation of each of the five tested target genes requires different parts of the protein and/or presumably different co-factors. The multiplicity of Krox20 functions might rely on this diversity. Investigation of known Krox20 co-factors was initiated in relation to this analysis. Nab was shown to act as a negative feedback modulator of the different Krox20 activating functions in the hindbrain. HCF-1 was found to bind to a Krox20 N-terminal region, which was shown to rely on multiple elements, including acidic domains, to convey Nab activation and Krox20 autoregulation.


Assuntos
Proteína 2 de Resposta de Crescimento Precoce/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Rombencéfalo/embriologia , Transcrição Gênica , Animais , Células COS , Núcleo Celular/metabolismo , Chlorocebus aethiops , Proteína 2 de Resposta de Crescimento Precoce/genética , Fator C1 de Célula Hospedeira/genética , Fator C1 de Célula Hospedeira/metabolismo , Camundongos , Morfogênese , Mutação , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Rombencéfalo/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA