Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de estudo
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Clin Monit Comput ; 2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38512359

RESUMO

Transpulmonary pressure (PL) calculation requires esophageal pressure (PES) as a surrogate of pleural pressure (Ppl), but its calibration is a cumbersome technique. Central venous pressure (CVP) swings may reflect tidal variations in Ppl and could be used instead of PES, but the interpretation of CVP waveforms could be difficult due to superposition of heartbeat-induced pressure changes. Thus, we developed a digital filter able to remove the cardiac noise to obtain a filtered CVP (f-CVP). The aim of the study was to evaluate the accuracy of CVP and filtered CVP swings (ΔCVP and Δf-CVP, respectively) in estimating esophageal respiratory swings (ΔPES) and compare PL calculated with CVP, f-CVP and PES; then we tested the diagnostic accuracy of the f-CVP method to identify unsafe high PL levels, defined as PL>10 cmH2O. Twenty patients with acute respiratory failure (defined as PaO2/FiO2 ratio below 200 mmHg) treated with invasive mechanical ventilation and monitored with an esophageal balloon and central venous catheter were enrolled prospectively. For each patient a recording session at baseline was performed, repeated if a modification in ventilatory settings occurred. PES, CVP and airway pressure during an end-inspiratory and -expiratory pause were simultaneously recorded; CVP, f-CVP and PES waveforms were analyzed off-line and used to calculate transpulmonary pressure (PLCVP, PLf-CVP, PLPES, respectively). Δf-CVP correlated better than ΔCVP with ΔPES (r = 0.8, p = 0.001 vs. r = 0.08, p = 0.73), with a lower bias in Bland Altman analysis in favor of PLf-CVP (mean bias - 0.16, Limits of Agreement (LoA) -1.31, 0.98 cmH2O vs. mean bias - 0.79, LoA - 3.14, 1.55 cmH2O). Both PLf-CVP and PLCVP correlated well with PLPES (r = 0.98, p < 0.001 vs. r = 0.94, p < 0.001), again with a lower bias in Bland Altman analysis in favor of PLf-CVP (0.15, LoA - 0.95, 1.26 cmH2O vs. 0.80, LoA - 1.51, 3.12, cmH2O). PLf-CVP discriminated high PL value with an area under the receiver operating characteristic curve 0.99 (standard deviation, SD, 0.02) (AUC difference = 0.01 [-0.024; 0.05], p = 0.48). In mechanically ventilated patients with acute respiratory failure, the digital filtered CVP estimated ΔPES and PL obtained from digital filtered CVP represented a reliable value of standard PL measured with the esophageal method and could identify patients with non-protective ventilation settings.

2.
A A Pract ; 13(10): 389-391, 2019 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-31567268

RESUMO

Continuous positive airway pressure (CPAP) has been used in multiple clinical settings with increasing frequency. However, its use in improving blood oxygenation for difficult airways has never been a specific consideration. Here, we present a rapid response team (RRT) intervention in a patient with severe hypoxia requiring emergent surgical tracheostomy. To restore an adequate level of blood oxygen saturation, helmet CPAP was used during transportation and surgical tracheostomy. In selected cases involving difficult airways, helmet CPAP may have some advantages. Additional studies are warranted to assess the benefits of introducing this device to RRT equipment.


Assuntos
Pressão Positiva Contínua nas Vias Aéreas/instrumentação , Hipóxia/terapia , Traqueostomia/métodos , Serviços Médicos de Emergência , Feminino , Equipe de Respostas Rápidas de Hospitais , Humanos , Hipóxia/etiologia , Pessoa de Meia-Idade , Vigília
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA