Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Dairy Sci ; 104(6): 6598-6608, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33773791

RESUMO

This study aimed to investigate the production of acid-coagulated fresh cheese by using slightly acid diafiltered (DF) microfiltered (MF) casein concentrates (8% protein). Three different acidifying agents were tested during DF: carbon dioxide, lactic acid, and citric acid. Fresh cheese was manufactured using acid-DF casein concentrates, or casein concentrates DF with just water, and compared with cheese manufactured using MF casein concentrates without DF. The fresh cheeses were characterized for composition, rheological, and sensorial properties. Acid-DF casein concentrates improved acidification kinetics during cheesemaking and reduced casein leakage to cheese whey, compared with cheese from regular MF casein concentrate. Among the rheological properties investigated in this study, the storage modulus of the fresh cheese was higher when DF of the casein concentrate was performed with nonacidified DF water or when DF water was acidified with citric acid. However, fresh cheese made from casein concentrate diafiltered with DF water acidified by citric acid was most liked in a sensory ranking test.


Assuntos
Queijo , Animais , Caseínas , Queijo/análise , Manipulação de Alimentos , Leite/química , Soro do Leite/química , Proteínas do Soro do Leite/análise
2.
J Dairy Sci ; 103(9): 7927-7938, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32684480

RESUMO

Cheese made from microfiltration (MF) retentate may suffer from textural defects due to a high Ca concentration. The reduction of colloidal minerals by the acidification of milk before MF at pH below 6.0 has been well documented in the literature. This process, however, creates less valuable side streams to the MF process and induces changes in the casein micelles that negatively affect their coagulation properties. The objective of this study was to determine whether a minor reduction in pH by using different acidifiers in the diafiltration (DF) water could induce changes in composition and renneting properties of the MF retentate. A 2-stage filtration process was used, with the first designed to increase the casein concentration to 8% and the second to slightly reduce the casein concentrate by 0.1 pH unit by DF, without influencing the total protein concentration. Four acidifying agents were tested during DF: lactic acid, hydrochloric acid, citric acid, and carbon dioxide. Diafiltration with water was used as a reference. At the start of DF, the retentates of acid DF had a slightly reduced pH, with an average of 0.09, whereas the pH of the reference retentate increased by an average of 0.07 unit. The reference retentate regained its starting pH by the end of DF. The carbonated retentate gradually increased in pH during processing, whereas the pH of the lactic, hydrochloric, and citric acid retentates remained constant. The permeate from the lactic acid and carbonated treatments had a reduced whey protein content compared with the reference. The total P and inorganic phosphate were lowered in the retentate by using carbonation. The total amount of Mg and Na were lowered in the retentate by using citric acid. The ionic Ca content in the retentate increased with use of lactic or hydrochloric acid. The type of acidifier used reduced the rennet clotting time. Combined acidified diafiltration with a slight reduction affects the permeate composition and improves the retentate clotting time despite the minimal mineral modification.


Assuntos
Caseínas/química , Queijo/análise , Quimosina/química , Manipulação de Alimentos , Animais , Filtração/métodos , Manipulação de Alimentos/métodos , Concentração de Íons de Hidrogênio , Micelas , Leite/química , Água , Proteínas do Soro do Leite/análise
3.
Int J Food Microbiol ; 410: 110505, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38043377

RESUMO

Fermentation has recently been rediscovered as an attractive technique to process legumes, as it can improve the nutritional quality and value of the end product. This study investigated the dynamics and stability of the microbial communities in spontaneously fermented sourdoughs made from flours of two cultivars of faba beans and two cultivars of peas. Sourdoughs were established by the backslopping technique, and the microbial development at 22 °C and 30 °C was followed by culture dependent and culture independent methods. The utilization of substrates and formation of metabolites were also determined by high-performance liquid chromatography. A stable pH was reached in all the sourdoughs after 11-15 days of daily backslopping. Lactic acid bacteria and yeast from pH stable sourdoughs were isolated, characterized and identified. The fermentation temperature influenced the development of the microbial community and the substrate utilization during spontaneous fermentation. In the 30 °C fermentations, one species dominated (Lactiplantibacillus plantarum/pentosus), a lower pH was achieved, and the available substrates were more extensively converted. The 22 °C fermentation resulted in a more diverse microbial community (Lactiplantibacillus, Leuconostoc, Pediococcus), a higher pH, and more residual substrates were available after fermentation. Yeasts were only detected in one of the pea sourdoughs fermented at 30 °C, with Saccharomyces cerevisiae being the dominant species. Nearly all sourdoughs were depleted of maltose after 24 h fermentation cycles, and higher levels of lactic and acetic acid were detected in 30 °C fermen-tations. This research adds to our understanding of the autochthonous microbial community present in faba beans and peas as well as their natural capacity to establish themselves and ferment legume flours. These findings enhance the possibilities of utilizing and improving plant based protein sources.


Assuntos
Fabaceae , Microbiota , Vicia faba , Fermentação , Saccharomyces cerevisiae , Pediococcus , Verduras , Farinha/microbiologia , Pão/microbiologia , Microbiologia de Alimentos
4.
Food Res Int ; 176: 113833, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38163727

RESUMO

The biotechnological reuse of winery by-products has great potential to increase the value and sustainability of the wine industry. Recent studies revealed that yeast biomass can be an exciting source of bioactive peptides with possible benefits for human health, and its incorporation in plant-based foods is considered innovative and sustainable. In this study, we aimed to identify, through in silico analyses, potential bioactive peptides from yeast extracts after in vitro digestion. Wine lees from a non-Saccharomyces oenological yeast, Starmerella bacillaris FRI751, Saccharomyces cerevisiae EC1118, and sequential fermentation performed with both strains (SEQ) were recovered in a synthetic must. Cellular pellets were enzymatically treated with zymolyase, and the yeast extracts were submitted to in vitro gastrointestinal digestions. LC-MS/MS sequenced the hydrolyzed peptides, and their potential bioactivity was inferred. S. bacillaris FRI751 fermentation showed 132 peptide sequences, S. cerevisiae EC1118 60, SEQ 89. A total of 243 unique peptide sequences were identified across the groups. Furthermore, based on the peptide sequence, the FRI751 extract showed the highest potential antihypertensive with 275 bioactive fragments. Other bioactivities, such as antimicrobial and immunomodulatory, were also identified in all yeast extracts. A potential antiobesity bioactive peptide VVP was identified only in the yeast extract from S. bacillaris single strain. The wine lees from S. bacillaris single strain and SEQ fermentation are a richer source of potential bioactive peptides than those from S. cerevisiae fermentation. This study opens new possibilities in the valorization of winemaking by-products.


Assuntos
Vinho , Humanos , Vinho/análise , Saccharomyces cerevisiae/metabolismo , Fermentação , Cromatografia Líquida , Espectrometria de Massas em Tandem , Peptídeos/análise , Digestão
5.
Food Chem ; 440: 138311, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38160596

RESUMO

Wine protein haze formation is a problem due to grape proteins aggregation during wine storage. The cell wall components of wine yeasts, particularly high molecular weight mannoproteins, have a protective effect against haze formation, although their involvement remains poorly understood. This study aimed at characterizing glycosylated proteins released by Starmerella bacillaris and Saccharomyces cerevisiae during single and sequential fermentations in a synthetic must, and testing their impact on wine protein stability. Mannoproteins-rich extracts from sequential fermentations showed an increase in the low MW polysaccharide fraction and, when added to an unstable wine, had a greater effect on protein stability than S. cerevisiae extracts. Shotgun proteomics approaches revealed that the identified cell wall proteins exclusively found in sequential fermentations were produced by both S. bacillaris (MKC7, ENG1) and S. cerevisiae (Bgl2p). Moreover, sequential fermentations significantly increased the expression of Scw4p and 1,3-beta-glucanosyltransferase (GAS5), produced by S. cerevisiae. Finally, some of the key proteins identified might play a positive role in increasing wine protein stability.


Assuntos
Glicoproteínas de Membrana , Saccharomyces cerevisiae , Saccharomycetales , Vinho , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Vinho/análise , Fermentação , Estabilidade Proteica
6.
Metabolites ; 11(10)2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34677377

RESUMO

Little is known about the extent of variation and activity of naturally occurring milk glycosidases and their potential to degrade milk glycans. A multi-omics approach was used to investigate the relationship between glycosidases and important bioactive compounds such as free oligosaccharides and O-linked glycans in bovine milk. Using 4-methylumbelliferone (4-MU) assays activities of eight indigenous glycosidases were determined, and by mass spectrometry and 1H NMR spectroscopy various substrates and metabolite products were quantified in a subset of milk samples from eight native North European cattle breeds. The results showed a clear variation in glycosidase activities among the native breeds. Interestingly, negative correlations between some glycosidases including ß-galactosidase, N-acetyl-ß-d-glucosaminidase, certain oligosaccharide isomers as well as O-linked glycans of κ-casein were revealed. Further, a positive correlation was found for free fucose content and α-fucosidase activity (r = 0.37, p-value < 0.001) indicating cleavage of fucosylated glycans in milk at room temperature. The results obtained suggest that milk glycosidases might partially degrade valuable glycans, which would result in lower recovery of glycans and thus represent a loss for the dairy ingredients industry if these activities are pronounced.

7.
Foods ; 9(9)2020 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-32854283

RESUMO

Celiac disease (CeD) is an autoimmune enteropathy triggered by immunogenic gluten peptides released during the gastrointestinal digestion of wheat. Our aim was to identify T cell epitope-containing peptides after ex vivo digestion of ancestral (einkorn, spelt and emmer) and common (hexaploid) wheat (Fram, Bastian, Børsum and Mirakel) using human gastrointestinal juices. Wheat porridge was digested using a static ex vivo model. Peptides released after 240 min of digestion were analyzed by liquid chromatography coupled to high-resolution mass spectrometry (HPLC-ESI MS/MS). Ex vivo digestion released fewer T cell epitope-containing peptides from the ancestral wheat varieties (einkorn (n = 38), spelt (n = 45) and emmer (n = 68)) compared to the common wheat varieties (Fram (n = 72), Børsum (n = 99), Bastian (n = 155) and Mirakel (n = 144)). Neither the immunodominant 33mer and 25mer α-gliadin peptides, nor the 26mer γ-gliadin peptide, were found in any of the digested wheat types. In conclusion, human digestive juice was able to digest the 33mer and 25mer α-gliadin, and the 26mer γ-gliadin derived peptides, while their fragments still contained naive T cell reactive epitopes. Although ancestral wheat released fewer immunogenic peptides after human digestion ex vivo, they are still highly toxic to celiac patients. More general use of these ancient wheat variants may, nevertheless, reduce CeD incidence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA