RESUMO
Cardiac fibroblasts (CFs) have a key role in the inflammatory response after cardiac injury and are necessary for wound healing. Resolvins are potent agonists that control the duration and magnitude of inflammation. They decrease mediators of pro-inflammatory expression, reduce neutrophil migration to inflammation sites, promote the removal of microbes and apoptotic cells, and reduce exudate. However, whether resolvins can prevent pro-inflammatory-dependent effects in CFs is unknown. Thus, the present work was addressed to study whether resolvin D1 and E1 (RvD1 and RvE1) can prevent pro-inflammatory effects on CFs after lipopolysaccharide (LPS) challenge. For this, CFs were stimulated with LPS, in the presence or absence of RvD1 or RvE1, to analyze its effects on intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion protein 1 (VCAM-1), monocyte adhesion and the cytokine levels of tumor necrosis factor alpha (TNF-α), interleukin-6(IL-6), interleukin-1beta (IL-1ß), monocyte chemoattractant protein-1 (MCP-1) and interleukin-10 (IL-10). Our results showed that CFs are expressing ALX/FPR2 and ChemR23, RvD1 and RvE1 receptors, respectively. RvD1 and RvE1 prevent the increase of ICAM-1 and VCAM-1 protein levels and the adhesion of spleen mononuclear cells to CFs induced by LPS. Finally, RvD1, but not RvE1, prevents the LPS-induced increase of IL-6, MCP-1, TNF-α, and IL-10. In conclusion, our findings provide evidence that in CFs, RvD1 and RvE1 might actively participate in the prevention of inflammatory response triggered by LPS.
Assuntos
Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/análogos & derivados , Traumatismos Cardíacos/tratamento farmacológico , Inflamação/tratamento farmacológico , Animais , Movimento Celular/efeitos dos fármacos , Citocinas/genética , Ácido Eicosapentaenoico/farmacologia , Fibroblastos/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Traumatismos Cardíacos/induzido quimicamente , Traumatismos Cardíacos/patologia , Humanos , Inflamação/induzido quimicamente , Inflamação/patologia , Interleucina-1beta/genética , Lipopolissacarídeos/toxicidade , Neutrófilos/efeitos dos fármacos , Ratos , Fator de Necrose Tumoral alfa/genética , Molécula 1 de Adesão de Célula Vascular/genética , Cicatrização/efeitos dos fármacosRESUMO
BACKGROUND: The primary cilium is a singular cellular structure that extends from the surface of many cell types and plays crucial roles in vertebrate development, including that of the heart. Whereas ciliated cells have been described in developing heart, a role for primary cilia in adult heart has not been reported. This, coupled with the fact that mutations in genes coding for multiple ciliary proteins underlie polycystic kidney disease, a disorder with numerous cardiovascular manifestations, prompted us to identify cells in adult heart harboring a primary cilium and to determine whether primary cilia play a role in disease-related remodeling. METHODS: Histological analysis of cardiac tissues from C57BL/6 mouse embryos, neonatal mice, and adult mice was performed to evaluate for primary cilia. Three injury models (apical resection, ischemia/reperfusion, and myocardial infarction) were used to identify the location and cell type of ciliated cells with the use of antibodies specific for cilia (acetylated tubulin, γ-tubulin, polycystin [PC] 1, PC2, and KIF3A), fibroblasts (vimentin, α-smooth muscle actin, and fibroblast-specific protein-1), and cardiomyocytes (α-actinin and troponin I). A similar approach was used to assess for primary cilia in infarcted human myocardial tissue. We studied mice silenced exclusively in myofibroblasts for PC1 and evaluated the role of PC1 in fibrogenesis in adult rat fibroblasts and myofibroblasts. RESULTS: We identified primary cilia in mouse, rat, and human heart, specifically and exclusively in cardiac fibroblasts. Ciliated fibroblasts are enriched in areas of myocardial injury. Transforming growth factor ß-1 signaling and SMAD3 activation were impaired in fibroblasts depleted of the primary cilium. Extracellular matrix protein levels and contractile function were also impaired. In vivo, depletion of PC1 in activated fibroblasts after myocardial infarction impaired the remodeling response. CONCLUSIONS: Fibroblasts in the neonatal and adult heart harbor a primary cilium. This organelle and its requisite signaling protein, PC1, are required for critical elements of fibrogenesis, including transforming growth factor ß-1-SMAD3 activation, production of extracellular matrix proteins, and cell contractility. Together, these findings point to a pivotal role of this organelle, and PC1, in disease-related pathological cardiac remodeling and suggest that some of the cardiovascular manifestations of autosomal dominant polycystic kidney disease derive directly from myocardium-autonomous abnormalities.
Assuntos
Fibroblastos/ultraestrutura , Miocárdio/patologia , Rim Policístico Autossômico Dominante/patologia , Células 3T3/ultraestrutura , Animais , Animais Recém-Nascidos , Remodelamento Atrial , Cílios , Coração Fetal/citologia , Fibrose , Traumatismos Cardíacos/patologia , Humanos , Cinesinas/deficiência , Cinesinas/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infarto do Miocárdio/patologia , Traumatismo por Reperfusão Miocárdica/patologia , Rim Policístico Autossômico Dominante/genética , Ratos , Transdução de Sinais , Proteína Smad3/fisiologia , Canais de Cátion TRPP/deficiência , Canais de Cátion TRPP/fisiologia , Fator de Crescimento Transformador beta1/fisiologia , Remodelação VentricularRESUMO
Cardiac myofibroblast (CMF) are non-muscle cardiac cells that play a crucial role in wound healing and in pathological remodeling. These cells are mainly derived of cardiac fibroblast (CF) differentiation mediated by TGF-ß1. Evidence suggests that bradykinin (BK) regulates cardiac fibroblast function in the heart. Both B1 and B2 kinin receptors (B1R and B2R, respectively) mediate the biological effects of kinins. We recently showed that both receptors are expressed in CMF and its stimulation decreases collagen secretion. Whether TGF-ß1 regulates B1R and B2R expression, and how these receptors control antifibrotic activity in CMF remains poorly understood. In this work, we sought to study, the regulation of B1R expression in cultured CMF mediated by TGF-ß1, and the molecular mechanisms involved in B1R activation on CMF intracellular collagen type-I levels. Cardiac fibroblast-primary culture was obtained from neonatal rats. Hearts were digested and CFs were attached to dishes and separated from cardiomyoctes. CMF were obtained from CF differentiation with TGF-ß1 5 ng/mL. CF and CMF were treated with B1R and B2R agonists and with TGF-ß1 at different times and concentrations, in the presence or absence of chemical inhibitors, to evaluate signaling pathways involved in B1R expression, collagen type-I and prostacyclin levels. B1R and collagen type-I levels were evaluated by western blot. Prostacyclin levels were quantified by an ELISA kit. TGF-ß1 increased B1R expression via TGFß type I receptor kinase (ALK5) activation and its subsequent signaling pathways involving Smad2, p38, JNK and ERK1/2 activation. Moreover, in CMF, the activation of B1R and B2R by their respective agonists, reduced collagen synthesis. This effect was mediated by the canonical signaling pathway; phospholipase C (PLC), protein kinase C (PKC), phospholipase A2 (PLA2), COX-2 activation and PGI2 secretion and its autocrine effect. TGF-ß1 through ALK5, Smad2, p38, JNK and ERK1/2 increases B1R expression; whereas in CMF, B1R and B2R activation share common signaling pathways for reducing collagen synthesis.
Assuntos
Miocárdio/citologia , Miofibroblastos/citologia , Receptor B1 da Bradicinina/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Regulação para Cima , Animais , Animais Recém-Nascidos , Diferenciação Celular , Células Cultivadas , Colágeno Tipo I/metabolismo , Epoprostenol/metabolismo , Regulação da Expressão Gênica , Miofibroblastos/metabolismo , Ratos , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , Transdução de Sinais/efeitos dos fármacosRESUMO
New histone deacetylases (HDAC) inhibitors with low toxicity to non-cancerous cells, are a prevalent issue at present because these enzymes are actively involved in fibrotic diseases. We designed and synthesized a novel series of thiazolyl-coumarins, substituted at position 6 (R = H, Br, OCH3), linked to classic zinc binding groups, such as hydroxamic and carboxylic acid moieties and alternative zinc binding groups such as disulfide and catechol. Their in vitro inhibitory activities against HDACs were evaluated. Disulfide and hydroxamic acid derivatives were the most potent ones. Assays with neonatal rat cardiac fibroblasts demonstrated low cytotoxic effects for all compounds. Regarding the parameters associated to cardiac fibrosis development, the compounds showed antiproliferative effects, and triggered a strong decrease on the expression levels of both α-SMA and procollagen I. In conclusion, the new thiazolyl-coumarin derivatives inhibit HDAC activity and decrease profibrotic effects on cardiac fibroblasts.
Assuntos
Cumarínicos/síntese química , Cumarínicos/farmacologia , Inibidores de Histona Desacetilases/síntese química , Inibidores de Histona Desacetilases/farmacologia , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacologia , Biomarcadores , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Técnicas de Química Sintética , Cumarínicos/química , Fibrose , Expressão Gênica , Inibidores de Histona Desacetilases/química , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Estrutura Molecular , RatosRESUMO
Cardiac fibroblasts (CF) act as sentinel cells responding to chemokines, cytokines and growth factors released in cardiac tissue in cardiac injury events, such as myocardial infarction (MI). Cardiac injury involves the release of various damage-associated molecular patterns (DAMPs) including heparan sulfate (HS), a constituent of the extracellular matrix (ECM), through the TLR4 receptor activation triggering a strong inflammatory response, inducing leukocytes recruitment. This latter cells are responsible of clearing cell debris and releasing cytokines that promote CF differentiation to myofibroblast (CMF), thus initiating scar formation. CF were isolated from adult male rats and subsequently stimulated with HS or LPS, in the presence or absence of chemical inhibitors, to evaluate signaling pathways involved in ICAM-1 and VCAM-1 expression. siRNA against ICAM-1 and VCAM-1 were used to evaluate participation of these adhesion molecules on leukocytes recruitment. HS through TLR4, PI3K/AKT and NF-ΚB increased ICAM-1 and VCAM-1 expression, which favored the adhesion of spleen mononuclear cells (SMC) and bone marrow granulocytes (PMN) to CF. These effects were prevented by siRNA against ICAM-1 and VCAM-1. Co-culture of CF with SMC increased α-SMA expression, skewing CF towards a pro-fibrotic phenotype, while CF pretreatment with HS partially reverted this effect. CONCLUSION: These data show the dual role of HS during the initial stages of wound healing. Initially, HS enhance the pro-inflammatory role of CF increasing cytokines secretion; and later, by increasing protein adhesion molecules allows the adhesion of SMC on CF, which trigger CF-to-CMF differentiation.
Assuntos
Adesão Celular/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Heparitina Sulfato/farmacologia , Molécula 1 de Adesão Intercelular/metabolismo , Leucócitos/efeitos dos fármacos , Miocárdio/citologia , Molécula 1 de Adesão de Célula Vascular/metabolismo , Animais , Células Cultivadas , Fibroblastos/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Molécula 1 de Adesão Intercelular/genética , Leucócitos/fisiologia , Masculino , Miocárdio/metabolismo , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/fisiologia , Ratos , Ratos Sprague-Dawley , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Regulação para Cima/efeitos dos fármacos , Regulação para Cima/genética , Molécula 1 de Adesão de Célula Vascular/genéticaRESUMO
Cardiac fibroblasts (CF) are key cells for maintaining extracellular matrix (ECM) protein homeostasis in the heart, and for cardiac repair through CF-to-cardiac myofibroblast (CMF) differentiation. Additionally, CF play an important role in the inflammatory process after cardiac injury, and they express Toll like receptor 4 (TLR4), B1 and B2 bradykinin receptors (B1R and B2R) which are important in the inflammatory response. B1R and B2R are induced by proinflammatory cytokines and their activation by bradykinin (BK: B2R agonist) or des-arg-kallidin (DAKD: B1R agonist), induces NO and PGI2 production which is key for reducing collagen I levels. However, whether TLR4 activation regulates bradykinin receptor expression remains unknown. CF were isolated from human, neonatal rat and adult mouse heart. B1R mRNA expression was evaluated by qRT-PCR, whereas B1R, collagen, COX-2 and iNOS protein levels were evaluated by Western Blot. NO and PGI2 were evaluated by commercial kits. We report here that in CF, TLR4 activation increased B1R mRNA and protein levels, as well as COX-2 and iNOS levels. B1R mRNA levels were also induced by interleukin-1α via its cognate receptor IL-1R1. In LPS-pretreated CF the DAKD treatment induced higher responses with respect to those observed in non LPS-pretreated CF, increasing PGI2 secretion and NO production; and reducing collagen I protein levels in CF. In conclusion, no significant response to DAKD was observed (due to very low expression of B1R in CF) - but pre-activation of TLR4 in CF, conditions that significantly enhanced B1R expression, led to an additional response of DAKD.
Assuntos
Fibroblastos/metabolismo , Miócitos Cardíacos/metabolismo , Receptor B1 da Bradicinina/biossíntese , Receptor 4 Toll-Like/biossíntese , Animais , Células Cultivadas , Fibroblastos/efeitos dos fármacos , Expressão Gênica , Humanos , Lipopolissacarídeos/toxicidade , Camundongos , Camundongos Knockout , Miócitos Cardíacos/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Receptor B1 da Bradicinina/agonistas , Receptor B1 da Bradicinina/genética , Receptor 4 Toll-Like/agonistas , Receptor 4 Toll-Like/genéticaRESUMO
Cardiac fibroblast differentiation to myofibroblast is a crucial process in the development of cardiac fibrosis and is tightly dependent on transforming growth factor beta-1 (TGF-ß1). The transcription factor forkhead box O1 (FoxO1) regulates many cell functions, including cell death by apoptosis, proliferation, and differentiation. However, several aspects of this process remain unclear, including the role of FoxO1 in cardiac fibroblast differentiation and the regulation of FoxO1 by TGF-ß1. Here, we report that TGF-ß1 stimulates FoxO1 expression, promoting its dephosphorylation, nuclear localization and transcriptional activity in cultured cardiac fibroblasts. TGF-ß1 also increases differentiation markers such as α-smooth muscle actin, connective tissue growth factor, and pro-collagen I, whereas it decreases cardiac fibroblast proliferation triggered by fetal bovine serum. TGF-ß1 also increases levels of p21waf/cip-cycle inhibiting factor protein, a cytostatic factor promoting cell cycle arrest and cardiac fibroblast differentiation. In addition, TGF-ß1 increases cardiac fibroblast contractile capacity as assessed by collagen gel contraction assay. The effect of TGF-ß1 on cardiac fibroblast differentiation was prevented by FoxO1 down-regulation and enhanced by FoxO1 overexpression. Thus, our findings reveal that FoxO1 is regulated by TGF-ß1 and plays a critical role in cardiac fibroblast differentiation. We propose that FoxO1 is an attractive new target for anti-fibrotic therapy.
Assuntos
Diferenciação Celular , Núcleo Celular/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Regulação da Expressão Gênica , Miocárdio/metabolismo , Miofibroblastos/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Transporte Ativo do Núcleo Celular , Animais , Bovinos , Núcleo Celular/genética , Células Cultivadas , Inibidor de Quinase Dependente de Ciclina p21/genética , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Fatores de Transcrição Forkhead/genética , Miocárdio/citologia , Miofibroblastos/citologia , Proteínas do Tecido Nervoso/genética , Ratos , Ratos Sprague-Dawley , Fator de Crescimento Transformador beta1/genéticaRESUMO
Macrophage polarization plays an essential role in cardiac remodeling after injury, evolving from an initial accumulation of proinflammatory M1 macrophages to a greater balance of anti-inflammatory M2 macrophages. Whether cardiac fibroblasts themselves influence this process remains an intriguing question. In this work, we present evidence for a role of cardiac fibroblasts (CF) as regulators of macrophage recruitment and skewing. Adult rat CF, were treated with lipopolysaccharide (LPS) or TGF-ß1, to evaluate ICAM-1 and VCAM-1 expression using Western blot and proinflammatory/profibrotic cytokine secretion using LUMINEX. We performed in vitro migration and adhesion assays of rat spleen monocytes to layers of TGF-ß1- or LPS-pretreated CF. Finally, TGF-ß1- or LPS-pretreated CF were co-cultured with monocyte, to evaluate their effects on macrophage polarization, using flow cytometry and cytokine secretion. There was a significant increase in monocyte adhesion to LPS- or TGF-ß1-stimulated CF, associated with increased CF expression of ICAM-1 and VCAM-1. siRNA silencing of either ICAM-1 or VCAM-1 inhibited monocyte adhesion to LPS-pretreated CF; however, monocyte adhesion to TGF-ß1-treated CF was dependent on only VCAM-1 expression. Pretreatment of CF with LPS or TGF-ß1 increased monocyte migration to CF, and this effect was completely abolished with an MCP-1 antibody blockade. LPS-treated CF secreted elevated levels of TNF-α and MCP-1, and when co-cultured with monocyte, LPS-treated CF stimulated increased macrophage M1 polarization and secretion of proinflammatory cytokines (TNF-α, IL-12 and MCP-1). On the other hand, CF stimulated with TGF-ß1 produced an anti-inflammatory cytokine profile (high IL-10 and IL-5, low TNF-α). When co-cultured with monocytes, the TGF-ß1 stimulated fibroblasts skewed monocyte differentiation towards M2 macrophages accompanied by increased IL-10 and decreased IL-12 levels. Taken together, our results show for the first time that CF can recruit monocytes (via MCP-1-mediated chemotaxis and adhesion to ICAM-1/VCAM-1) and induce their differentiation to M1 or M2 macrophages (through the CF cytokine profile induced by proinflammatory or profibrotic stimuli).
RESUMO
Ischemia/reperfusion injury is a major cause of myocardial death. In the heart, cardiac fibroblasts play a critical role in healing post myocardial infarction. TGF-ß1 has shown cardioprotective effects in cardiac damage; however, if TGF-ß1 can prevent cardiac fibroblast death triggered by ischemia/reperfusion is unknown. Therefore, we test this hypothesis, and whether the canonical and/or non-canonical TGF-ß1 signaling pathways are involved in this protective effect. Cultured rat cardiac fibroblasts were subjected to simulated ischemia/reperfusion. Cell viability was analyzed by trypan blue exclusion and propidium iodide by flow cytometry. The processing of procaspases 8, 9 and 3 to their active forms was assessed by Western blot, whereas subG1 population was evaluated by flow cytometry. Levels of total and phosphorylated forms of ERK1/2, Akt and Smad2/3 were determined by Western blot. The role of these signaling pathways on the protective effect of TGF-ß1 was studied using specific chemical inhibitors. Simulated ischemia over 8h triggers a significant cardiac fibroblast death, which increased by reperfusion, with apoptosis actively involved. These effects were only prevented by the addition of TGF-ß1 during reperfusion. TGF-ß1 pretreatment increased the levels of phosphorylated forms of ERK1/2, Akt and Smad2/3. The inhibition of ERK1/2, Akt and Smad3 also blocked the preventive effects of TGF-ß1 on cardiac fibroblast apoptosis induced by simulated ischemia/reperfusion. Overall, our data suggest that TGF-ß1 prevents cardiac fibroblast apoptosis induced by simulated ischemia-reperfusion through the canonical (Smad3) and non canonical (ERK1/2 and Akt) signaling pathways.
Assuntos
Apoptose , Fibroblastos/metabolismo , Sistema de Sinalização das MAP Quinases , Proteínas Musculares/metabolismo , Traumatismo por Reperfusão Miocárdica/metabolismo , Miocárdio/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Fibroblastos/patologia , Proteína Quinase 3 Ativada por Mitógeno/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Miocárdio/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Proteína Smad2/metabolismo , Proteína Smad3/metabolismoRESUMO
RATIONALE: Dihydropyridines are widely used for the treatment of several cardiac diseases due to their blocking activity on L-type Ca(2+) channels and their renowned antioxidant properties. METHODS: We synthesized six novel dihydropyridine molecules and performed docking studies on the binding site of the L-type Ca(2+) channel. We used biochemical techniques on isolated adult rat cardiomyocytes to assess the efficacy of these molecules on their Ca(2+) channel-blocking activity and antioxidant properties. The Ca(2+) channel-blocking activity was evaluated by confocal microscopy on fluo-3AM loaded cardiomyocytes, as well as using patch clamp experiments. Antioxidant properties were evaluated by flow cytometry using the ROS sensitive dye 1,2,3 DHR. RESULTS: Our docking studies show that a novel compound with 3-OH substitution inserts into the active binding site of the L-type Ca(2+) channel previously described for nitrendipine. In biochemical assays, the novel meta-OH group in the aryl in C4 showed a high blocking effect on L-type Ca(2+) channel as opposed to para-substituted compounds. In the tests we performed, none of the molecules showed antioxidant properties. CONCLUSIONS: Only substitutions in C2, C3 and C5 of the aryl ring render dihydropyridine compounds with the capacity of blocking LTCC. Based on our docking studies, we postulate that the antioxidant activity requires a larger group than the meta-OH substitution in C2, C3 or C5 of the dihydropyridine ring.
Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Canais de Cálcio Tipo L/efeitos dos fármacos , Di-Hidropiridinas/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Animais , Sítios de Ligação , Cálcio/metabolismo , Bloqueadores dos Canais de Cálcio/química , Cardiotônicos/farmacologia , Separação Celular , Sobrevivência Celular/efeitos dos fármacos , Di-Hidropiridinas/química , Frequência Cardíaca/efeitos dos fármacos , Hidroxilação , Masculino , Modelos Moleculares , Técnicas de Patch-Clamp , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Relação Estrutura-AtividadeRESUMO
Premature vascular aging and endothelial cell senescence are major risk factors for cardiovascular diseases and atherothrombotic disturbances, which are main complications of both acute and long COVID-19. The S protein of SARS-CoV2, which acts as the receptor binding protein for the viral infection, is able to induce endothelial cells inflammation and it has been found as an isolated element in the circulation and in human tissues reservoirs months after infection. Here, we investigated whether the S protein is able to directly induce endothelial cell senescence and deciphered some of the mechanisms involved. In primary cultures of human umbilical vein endothelial cells (HUVEC), SARS-CoV-2 S protein enhanced in a concentration-dependent manner the cellular content of senescence and DNA damage response markers (senescence-associated-ß galactosidase, γH2AX), as well as growth-arrest effectors (p53, p21, p16). In parallel, the S protein reduced the availability of cytoprotective proteins, such as the anti-aging protein klotho, Nrf2 or heme oxygenase-1, and caused functional harm by impairing ex vivo endothelial-dependent vasorelaxation in murine microvessels. These effects were prevented by the pharmacological inhibition of the NLRP3 inflammasome with MCC950. Furthermore, the supplementation with either recombinant klotho or angiotensin-(1-7), equally protected against the pro-senescence, pro-inflammatory and pro-oxidant action of the S protein. Globally, this study proposes novel mechanisms of disease in the context of COVID-19 and its vascular sequelae and provides pharmacological clues in order to prevent such complications.
RESUMO
Pharmacological preconditioning limits myocardial infarct size after ischemia/reperfusion. Dexmedetomidine is an α(2)-adrenergic receptor agonist used in anesthesia that may have cardioprotective properties against ischemia/reperfusion injury. We investigate whether dexmedetomidine administration activates cardiac survival kinases and induces cardioprotection against regional ischemia/reperfusion injury. In in vivo and ex vivo models, rat hearts were subjected to 30 min of regional ischemia followed by 120 min of reperfusion with dexmedetomidine before ischemia. The α(2)-adrenergic receptor antagonist yohimbine was also given before ischemia, alone or with dexmedetomidine. Erk1/2, Akt and eNOS phosphorylations were determined before ischemia/reperfusion. Cardioprotection after regional ischemia/reperfusion was assessed from infarct size measurement and ventricular function recovery. Localization of α(2)-adrenergic receptors in cardiac tissue was also assessed. Dexmedetomidine preconditioning increased levels of phosphorylated Erk1/2, Akt and eNOS forms before ischemia/reperfusion; being significantly reversed by yohimbine in both models. Dexmedetomidine preconditioning (in vivo model) and peri-insult protection (ex vivo model) significantly reduced myocardial infarction size, improved functional recovery and yohimbine abolished dexmedetomidine-induced cardioprotection in both models. The phosphatidylinositol 3-kinase inhibitor LY-294002 reversed myocardial infarction size reduction induced by dexmedetomidine preconditioning. The three isotypes of α(2)-adrenergic receptors were detected in the whole cardiac tissue whereas only the subtypes 2A and 2C were observed in isolated rat adult cardiomyocytes. These results show that dexmedetomidine preconditioning and dexmedetomidine peri-insult administration produce cardioprotection against regional ischemia/reperfusion injury, which is mediated by the activation of pro-survival kinases after cardiac α(2)-adrenergic receptor stimulation.
Assuntos
Dexmedetomidina/farmacologia , Isquemia Miocárdica/prevenção & controle , Proteínas Quinases/metabolismo , Traumatismo por Reperfusão/prevenção & controle , Animais , Masculino , Isquemia Miocárdica/enzimologia , Ratos , Ratos Sprague-DawleyRESUMO
Insulin-like growth factor-1 (IGF-1) signaling is a key pathway in the control of cell growth and survival. Three critical nodes in the IGF-1 signaling pathway have been described in cardiomyocytes: protein kinase Akt/mammalian target of rapamycin (mTOR), Ras/Raf/extracellular signal-regulated kinase (ERK), and phospholipase C (PLC)/inositol 1,4,5-triphosphate (InsP3 )/Ca(2+) . The Akt/mTOR and Ras/Raf/ERK signaling arms govern survival in the settings of cardiac stress and hypertrophic growth. By contrast, PLC/InsP3 /Ca(2+) functions to regulate metabolic adaptability and gene transcription. Autophagy is a catabolic process involved in protein degradation, organelle turnover, and nonselective breakdown of cytoplasmic components during nutrient starvation or stress. In the heart, autophagy is observed in a variety of human pathologies, where it can be either adaptive or maladaptive, depending on the context. We proposed the hypothesis that IGF-1 protects the heart by rescuing the mitochondrial metabolism and the energetics state, reducing cell death and controls the potentially exacerbate autophagic response to nutritional stress. In light of the importance of IGF-1 and autophagy in the heart, we review here IGF-1 signaling and autophagy regulation in the context of cardiomyocyte nutritional stress.
Assuntos
Fator de Crescimento Insulin-Like I/metabolismo , Miocárdio/metabolismo , Miócitos Cardíacos/metabolismo , Estresse Fisiológico , Autofagia , Proliferação de Células , Humanos , Mitocôndrias/metabolismo , Miócitos Cardíacos/fisiologia , Transdução de SinaisRESUMO
UNLABELLED: In the heart, cardiac fibroblasts (CF) and cardiac myofibroblasts (CMF) are the main cells responsible for wound healing after cardiac insult. Exchange protein activated by cAMP (EPAC) is a downstream effector of cAMP, and it has been not completely studied on CF. Moreover, in CMF, which are the main cells responsible for cardiac healing, EPAC expression and function are unknown. We evaluated in both CF and CMF the effect of transforming growth factor ß1 (TGF-ß1) on EPAC-1 expression. We also studied the EPAC involvement on collagen synthesis, adhesion, migration and collagen gel contraction. METHOD: Rat neonatal CF and CMF were treated with TGF-ß1 at different times and concentrations. EPAC-1 protein levels and Rap1 activation were measured by western blot and pull down assay respectively. EPAC cellular functions were determined by adhesion, migration and collagen gel contraction assay; and collagen expression was determined by western blot. RESULTS: TGF-ß1 through Smad and JNK significantly reduced EPAC-1 expression in CF, while in CMF this cytokine increased EPAC-1 expression through ERK1/2, JNK, p38, AKT and Smad3. EPAC activation was able to induce higher Rap1-GTP levels in CMF than in CF. EPAC and PKA, both cAMP effectors, promoted CF and CMF adhesion on fibronectin, as well as CF migration; however, this effect was not observed in CMF. EPAC but not PKA activation mediated collagen gel contraction in CF, while in CMF both PKA and EPAC mediated collagen gel contraction. Finally, the EPAC and PKA activation reduced collagen synthesis in CF and CMF. CONCLUSION: TGF-ß1 differentially regulates the expression of EPAC in CF and CMF; and EPAC regulates differentially CF and CMF functions associated with cardiac remodeling.
Assuntos
Fibroblastos/efeitos dos fármacos , Fatores de Troca do Nucleotídeo Guanina/biossíntese , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Ventrículos do Coração/efeitos dos fármacos , Fator de Crescimento Transformador beta1/farmacologia , Animais , Animais Recém-Nascidos , Adesão Celular/efeitos dos fármacos , Adesão Celular/fisiologia , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/fisiologia , Movimento Celular/efeitos dos fármacos , Movimento Celular/fisiologia , Células Cultivadas , Colágeno/biossíntese , Fibroblastos/metabolismo , Ventrículos do Coração/citologia , Ventrículos do Coração/metabolismo , Miofibroblastos/efeitos dos fármacos , Miofibroblastos/metabolismo , Ratos , Ratos Sprague-Dawley , Remodelação Ventricular/fisiologiaRESUMO
BACKGROUND: Sympathetic stress stimulates norepinephrine (NE) release from sympathetic nerves. During pregnancy, it modifies the fetal environment, increases NE to the fetus through the placental NE transporter, and affects adult physiological functions. Gestating rats were exposed to stress, and then the heart function and sensitivity to in vivo adrenergic stimulation were studied in male progeny. METHODS: Pregnant Sprague-Dawley rats were exposed to cold stress (4 °C/3 h/day); rats' male progeny were euthanized at 20 and 60 days old, and their hearts were used to determine the ß-adrenergic receptor (ßAR) (radioligand binding) and NE concentration. The in vivo arterial pressure response to isoproterenol (ISO, 1 mg/kg weight/day/10 days) was monitored in real time (microchip in the descending aorta). RESULTS: Stressed male progeny presented no differences in ventricular weight, the cardiac NE was lower, and high corticosterone plasma levels were recorded at 20 and 60 days old. The relative abundance of ß1 adrenergic receptors decreased by 36% and 45%, respectively (p < 0.01), determined by Western blot analysis without changes in ß2 adrenergic receptors. A decrease in the ratio between ß1/ß2 receptors was found. Displacement of 3H-dihydroalprenolol (DHA) from a membrane fraction with propranolol (ß antagonist), atenolol (ß1 antagonist), or zinterol (ß2 agonist) shows decreased affinity but no changes in the ß-adrenergic receptor number. In vivo exposure to ISO to induce a ß-adrenergic overload provoked death in 50% of stressed males by day 3 of ISO treatment. CONCLUSION: These data suggest permanent changes to the heart's adrenergic response after rat progeny were stressed in the uterus.
Assuntos
Mães , Placenta , Ratos , Feminino , Masculino , Gravidez , Animais , Humanos , Ratos Sprague-Dawley , Placenta/metabolismo , Norepinefrina , Receptores Adrenérgicos beta/metabolismo , AdrenérgicosRESUMO
Cardiac fibroblasts are a cell population that controls the homeostasis of the extracellular matrix and orchestrates a damage response to maintain cardiac architecture and performance. Due to these functions, fibroblasts play a central role in cardiac fibrosis development, and there are large differences in matrix protein secretion profiles between fibroblasts from aged versus young animals. Senescence is a multifactorial and complex process that has been associated with inflammatory and fibrotic responses. After damage, transient cellular senescence is usually beneficial, as these cells promote tissue repair. However, the persistent presence of senescent cells within a tissue is linked with fibrosis development and organ dysfunction, leading to aging-related diseases such as cardiovascular pathologies. In the heart, early cardiac fibroblast senescence after myocardial infarction seems to be protective to avoid excessive fibrosis; however, in non-infarcted models of cardiac fibrosis, cardiac fibroblast senescence has been shown to be deleterious. Today, two new classes of drugs, termed senolytics and senostatics, which eliminate senescent cells or modify senescence-associated secretory phenotype, respectively, arise as novel therapeutical strategies to treat aging-related pathologies. However, further studies will be needed to evaluate the extent of the utility of senotherapeutic drugs in cardiac diseases, in which pathological context and temporality of the intervention must be considered.
Assuntos
Senescência Celular , Coração , Animais , Senescência Celular/fisiologia , Envelhecimento/patologia , Fibrose , Fibroblastos/metabolismoRESUMO
Cardiac cells respond to various pathophysiological stimuli, synthesizing inflammatory molecules that allow tissue repair and proper functioning of the heart; however, perpetuation of the inflammatory response can lead to cardiac fibrosis and heart dysfunction. High concentration of glucose (HG) induces an inflammatory and fibrotic response in the heart. Cardiac fibroblasts (CFs) are resident cells of the heart that respond to deleterious stimuli, increasing the synthesis and secretion of both fibrotic and proinflammatory molecules. The molecular mechanisms that regulate inflammation in CFs are unknown, thus, it is important to find new targets that allow improving treatments for HG-induced cardiac dysfunction. NFκB is the master regulator of inflammation, while FoxO1 is a new participant in the inflammatory response, including inflammation induced by HG; however, its role in the inflammatory response of CFs is unknown. The inflammation resolution is essential for an effective tissue repair and recovery of the organ function. Lipoxin A4 (LXA4) is an anti-inflammatory agent with cytoprotective effects, while its cardioprotective effects have not been fully studied. Thus, in this study, we analyze the role of p65/NFκB, and FoxO1 in CFs inflammation induced by HG, evaluating the anti-inflammatory properties of LXA4. Our results demonstrated that HG induces the inflammatory response in CFs, using an in vitro and ex vivo model, while FoxO1 inhibition and silencing prevented HG effects. Additionally, LXA4 inhibited the activation of FoxO1 and p65/NFκB, and inflammation of CFs induced by HG. Therefore, our results suggest that FoxO1 and LXA4 could be novel drug targets for the treatment of HG-induced inflammatory and fibrotic disorders in the heart.
Assuntos
Lipoxinas , Humanos , Lipoxinas/farmacologia , NF-kappa B , Inflamação/tratamento farmacológico , Fibrose , Glucose/toxicidade , Fibroblastos , Proteína Forkhead Box O1RESUMO
Introduction: Cardiac fibroblasts (CF) are crucial cells in damaged heart tissues, expressing TLR4, IFN-receptor and responding to lipopolysaccharide (LPS) and interferon-ß (IFN-ß) respectively. While CF interact with immune cells; however, their relationship with neutrophils remains understudied. Additionally, theimpact of LPS and IFN-ß on CF-neutrophil interaction is poorly understood. Methods: Isolated CF from adult rats were treated with LPS, with or without IFN-ß. This study examined IL-8 secretion, ICAM-1 and VCAM-1 expression, and neutrophil recruitment, as well as their effects on MMPs activity. Results: LPS triggered increased IL-8 expression and secretion, along with elevated ICAM-1 and VCAM-1 expression, all of which were blocked by TAK-242. Pre-treatment with IFN-ß countered these LPS effects. LPS treated CF showed higher neutrophil recruitment (migration and adhesion) compared to unstimulated CF, an effect prevented by IFN-ß. Ruxolitinib blocked these IFN-ß anti-inflammatory effects, implicating JAK signaling. Analysis of culture medium zymograms from CF alone, and CF-neutrophils interaction, revealed that MMP2 was mainly originated from CF, while MMP9 could come from neutrophils. LPS and IFN-ß boosted MMP2 secretion by CF. MMP9 activity in CF was low, and LPS or IFN-ß had no significant impact. Pre-treating CF with LPS, IFN-ß, or both before co-culture with neutrophils increased MMP2. Neutrophil co-culture increased MMP9 activity, with IFN-ß pre-treatment reducing MMP9 compared to unstimulated CF. Conclusion: In CF, LPS induces the secretion of IL-8 favoring neutrophils recruitment and these effects were blocked by IFN-. The results highlight that CF-neutrophil interaction appears to influence the extracellular matrix through MMPs activity modulation.
RESUMO
Cardiac fibroblasts (CFs) activation is a common response to most pathological conditions affecting the heart, characterized by increased cellular secretory capacity and increased expression of fibrotic markers, such as collagen I and smooth muscle actin type alpha (α-SMA). Fibrotic activation of CFs induces the increase in tissue protein content, with the consequent tissue stiffness, diastolic dysfunction, and heart failure. Therefore, the search for new mechanisms of CFs activation is important to find novel treatments for cardiac diseases characterized by fibrosis. In this regard, TGF-ß1, a cytokine with proinflammatory and fibrotic properties, is crucial in the CFs activation and the development of fibrotic diseases, whereas its molecular targets are not completely known. Serum and glucocorticoid-regulated kinase (SGK1) is a protein involved in various pathophysiological phenomena, especially cardiac and renal diseases that curse with fibrosis. Additionally, SGK1 phosphorylates and regulates the activity and expression of several targets, highlighting FoxO3a for its role in the regulation of oxidative stress and CFs activation induced by TGF-ß1. However, the regulation of SGK1 by TGF-ß1 and its role in CFs activation have not been studied. In this work, we evaluate the role of SGK1 in CFs isolated from neonatal Sprague-Dawley rats. The participation of SGK1 in the fibrotic activation of CFs induced by TGF-ß1 was analyzed, using an inhibitor or siRNA of SGK1. In addition, the role of SGK1 on the regulation of FoxO3a and oxidative stress induced by TGF-ß1 was analyzed. Our results indicate that TGF-ß1 increased both the activity and expression of SGK1 in CFs, requiring the activation of MAPKs, ERK1/2, p38 and JNK, while inhibition and silencing of SGK1 prevented TGF-ß1-induced fibrotic activation of CFs. In addition, SGK1 inhibition prevented FoxO3a inactivation and expression reduction, catalase and SOD2 expression decrease, and the increase of oxidative stress induced by TGF-ß1. Taken together, our results position SGK1 as an important regulator of CFs activation driven by TGF-ß1, at least in part, through the regulation of FoxO3a and oxidative stress.