Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Environ Microbiol ; 25(11): 2516-2533, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37596970

RESUMO

Seasonal changes in light and physicochemical conditions have strong impacts on cyanobacteria, but how they affect community structure, metabolism, and biogeochemistry of cyanobacterial mats remains unclear. Light may be particularly influential for cyanobacterial mats exposed to sulphide by altering the balance of oxygenic photosynthesis and sulphide-driven anoxygenic photosynthesis. We studied temporal shifts in irradiance, water chemistry, and community structure and function of microbial mats in the Middle Island Sinkhole (MIS), where anoxic and sulphate-rich groundwater provides habitat for cyanobacteria that conduct both oxygenic and anoxygenic photosynthesis. Seasonal changes in light and groundwater chemistry were accompanied by shifts in bacterial community composition, with a succession of dominant cyanobacteria from Phormidium to Planktothrix, and an increase in diatoms, sulphur-oxidizing bacteria, and sulphate-reducing bacteria from summer to autumn. Differential abundance of cyanobacterial light-harvesting proteins likely reflects a physiological response of cyanobacteria to light level. Beggiatoa sulphur oxidation proteins were more abundant in autumn. Correlated abundances of taxa through time suggest interactions between sulphur oxidizers and sulphate reducers, sulphate reducers and heterotrophs, and cyanobacteria and heterotrophs. These results support the conclusion that seasonal change, including light availability, has a strong influence on community composition and biogeochemical cycling of sulphur and O2 in cyanobacterial mats.


Assuntos
Cianobactérias , Proteoma , Proteoma/genética , Proteoma/metabolismo , Estações do Ano , Cianobactérias/metabolismo , Sulfetos/metabolismo , Oxigênio/metabolismo , Enxofre/metabolismo , Sulfatos/metabolismo
2.
Appl Environ Microbiol ; 89(5): e0209222, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37070981

RESUMO

Microcystis spp. produce diverse secondary metabolites within freshwater cyanobacterial harmful algal blooms (cyanoHABs) around the world. In addition to the biosynthetic gene clusters (BGCs) encoding known compounds, Microcystis genomes harbor numerous BGCs of unknown function, indicating a poorly understood chemical repertoire. While recent studies show that Microcystis produces several metabolites in the lab and field, little work has focused on analyzing the abundance and expression of its broader suite of BGCs during cyanoHAB events. Here, we use metagenomic and metatranscriptomic approaches to track the relative abundance of Microcystis BGCs and their transcripts throughout the 2014 western Lake Erie cyanoHAB. The results indicate the presence of several transcriptionally active BGCs that are predicted to synthesize both known and novel secondary metabolites. The abundance and expression of these BGCs shifted throughout the bloom, with transcript abundance levels correlating with temperature, nitrate, and phosphorus concentrations and the abundance of co-occurring predatory and competitive eukaryotic microorganisms, suggesting the importance of both abiotic and biotic controls in regulating expression. This work highlights the need for understanding the chemical ecology and potential risks to human and environmental health posed by secondary metabolites that are produced but often unmonitored. It also indicates the prospects for identifying pharmaceutical-like molecules from cyanoHAB-derived BGCs. IMPORTANCE Microcystis spp. dominate cyanobacterial harmful algal blooms (cyanoHABs) worldwide and pose significant threats to water quality through the production of secondary metabolites, many of which are toxic. While the toxicity and biochemistry of microcystins and several other compounds have been studied, the broader suite of secondary metabolites produced by Microcystis remains poorly understood, leaving gaps in our understanding of their impacts on human and ecosystem health. We used community DNA and RNA sequences to track the diversity of genes encoding synthesis of secondary metabolites in natural Microcystis populations and assess patterns of transcription in western Lake Erie cyanoHABs. Our results reveal the presence of both known gene clusters that encode toxic secondary metabolites as well as novel ones that may encode cryptic compounds. This research highlights the need for targeted studies of the secondary metabolite diversity in western Lake Erie, a vital freshwater source to the United States and Canada.


Assuntos
Cianobactérias , Microcystis , Humanos , Microcystis/genética , Lagos/microbiologia , Ecossistema , Cianobactérias/genética , Proliferação Nociva de Algas , Família Multigênica
3.
Appl Environ Microbiol ; 89(5): e0187022, 2023 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-37093010

RESUMO

Modern microbial mats are potential analogues for Proterozoic ecosystems, yet only a few studies have characterized mats under low-oxygen conditions that are relevant to Proterozoic environments. Here, we use protein-stable isotope fingerprinting (P-SIF) to determine the protein carbon isotope (δ13C) values of autotrophic, heterotrophic, and mixotrophic organisms in a benthic microbial mat from the low-oxygen Middle Island Sinkhole, Lake Huron, USA (MIS). We also measure the δ13C values of the sugar moieties of exopolysaccharides (EPS) within the mat to explore the relationships between cyanobacterial exudates and heterotrophic anabolic carbon uptake. Our results show that Cyanobacteria (autotrophs) are 13C-depleted, relative to sulfate-reducing bacteria (heterotrophs), and 13C-enriched, relative to sulfur oxidizing bacteria (autotrophs or mixotrophs). We also find that the pentose moieties of EPS are systematically enriched in 13C, relative to the hexose moieties of EPS. We hypothesize that these isotopic patterns reflect cyanobacterial metabolic pathways, particularly phosphoketolase, that are relatively more active in low-oxygen mat environments, rather than oxygenated mat environments. This results in isotopically more heterogeneous C sources in low-oxygen mats. While this might partially explain the isotopic variability observed in Proterozoic mat facies, further work is necessary to systematically characterize the isotopic fractionations that are associated with the synthesis of cyanobacterial exudates. IMPORTANCE The δ13C compositions of heterotrophic microorganisms are dictated by the δ13C compositions of their organic carbon sources. In both modern and ancient photosynthetic microbial mats, photosynthetic exudates are the most likely source of organic carbon for heterotrophs. We measured the δ13C values of autotrophic, heterotrophic, and mixotrophic bacteria as well as the δ13C value of the most abundant photosynthetic exudate (exopolysaccharide) in a modern analogue for a Proterozoic environment. Given these data, future studies will be better equipped to estimate the most likely carbon source for heterotrophs in both modern environments as well as in Proterozoic environments preserved in the rock record.


Assuntos
Carbono , Cianobactérias , Carbono/metabolismo , Ecossistema , Isótopos de Carbono/metabolismo , Cianobactérias/metabolismo , Oxigênio/metabolismo
4.
Appl Environ Microbiol ; 88(14): e0180321, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35862730

RESUMO

Interactions between bacteria and phytoplankton can influence primary production, community composition, and algal bloom development. However, these interactions are poorly described for many consortia, particularly for freshwater bloom-forming cyanobacteria. Here, we assessed the gene content and expression of two uncultivated Acidobacteria from Lake Erie Microcystis blooms. These organisms were targeted because they were previously identified as important catalase producers in Microcystis blooms, suggesting that they protect Microcystis from H2O2. Metatranscriptomics revealed that both Acidobacteria transcribed genes for uptake of organic compounds that are known cyanobacterial products and exudates, including lactate, glycolate, amino acids, peptides, and cobalamins. Expressed genes for amino acid metabolism and peptide transport and degradation suggest that use of amino acids and peptides by Acidobacteria may regenerate nitrogen for cyanobacteria and other organisms. The Acidobacteria genomes lacked genes for biosynthesis of cobalamins but expressed genes for its transport and remodeling. This indicates that the Acidobacteria obtained cobalamins externally, potentially from Microcystis, which has a complete gene repertoire for pseudocobalamin biosynthesis; expressed them in field samples; and produced pseudocobalamin in axenic culture. Both Acidobacteria were detected in Microcystis blooms worldwide. Together, the data support the hypotheses that uncultured and previously unidentified Acidobacteria taxa exchange metabolites with phytoplankton during harmful cyanobacterial blooms and influence nitrogen available to phytoplankton. Thus, novel Acidobacteria may play a role in cyanobacterial physiology and bloom development. IMPORTANCE Interactions between heterotrophic bacteria and phytoplankton influence competition and successions between phytoplankton taxa, thereby influencing ecosystem-wide processes such as carbon cycling and algal bloom development. The cyanobacterium Microcystis forms harmful blooms in freshwaters worldwide and grows in buoyant colonies that harbor other bacteria in their phycospheres. Bacteria in the phycosphere and in the surrounding community likely influence Microcystis physiology and ecology and thus the development of freshwater harmful cyanobacterial blooms. However, the impacts and mechanisms of interaction between bacteria and Microcystis are not fully understood. This study explores the mechanisms of interaction between Microcystis and uncultured members of its phycosphere in situ with population genome resolution to investigate the cooccurrence of Microcystis and freshwater Acidobacteria in blooms worldwide.


Assuntos
Cianobactérias , Microcystis , Acidobacteria/metabolismo , Aminoácidos/metabolismo , Carbono/metabolismo , Cianobactérias/genética , Ecossistema , Peróxido de Hidrogênio/metabolismo , Lagos/microbiologia , Microcystis/genética , Microcystis/metabolismo , Nitrogênio/metabolismo , Fitoplâncton/metabolismo , Vitamina B 12/metabolismo
5.
Appl Environ Microbiol ; 88(14): e0254421, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35862723

RESUMO

In the oligotrophic oceans, key autotrophs depend on "helper" bacteria to reduce oxidative stress from hydrogen peroxide (H2O2) in the extracellular environment. H2O2 is also a ubiquitous stressor in freshwaters, but the effects of H2O2 on autotrophs and their interactions with bacteria are less well understood in freshwaters. Naturally occurring H2O2 in freshwater systems is proposed to impact the proportion of microcystin-producing (toxic) and non-microcystin-producing (nontoxic) Microcystis in blooms, which influences toxin concentrations and human health impacts. However, how different strains of Microcystis respond to naturally occurring H2O2 concentrations and the microbes responsible for H2O2 decomposition in freshwater cyanobacterial blooms are unknown. To address these knowledge gaps, we used metagenomics and metatranscriptomics to track the presence and expression of genes for H2O2 decomposition by microbes during a cyanobacterial bloom in western Lake Erie in the summer of 2014. katG encodes the key enzyme for decomposing extracellular H2O2 but was absent in most Microcystis cells. katG transcript relative abundance was dominated by heterotrophic bacteria. In axenic Microcystis cultures, an H2O2 scavenger (pyruvate) significantly improved growth rates of one toxic strain while other toxic and nontoxic strains were unaffected. These results indicate that heterotrophic bacteria play a key role in H2O2 decomposition in Microcystis blooms and suggest that their activity may affect the fitness of some Microcystis strains and thus the strain composition of Microcystis blooms but not along a toxic versus nontoxic dichotomy. IMPORTANCE Cyanobacterial harmful algal blooms (CHABs) threaten freshwater ecosystems globally through the production of toxins. Toxin production by cyanobacterial species and strains during CHABs varies widely over time and space, but the ecological drivers of the succession of toxin-producing species remain unclear. Hydrogen peroxide (H2O2) is ubiquitous in natural waters, inhibits microbial growth, and may determine the relative proportions of Microcystis strains during blooms. However, the mechanisms and organismal interactions involved in H2O2 decomposition are unexplored in CHABs. This study shows that some strains of bloom-forming freshwater cyanobacteria benefit from detoxification of H2O2 by associated heterotrophic bacteria, which may impact bloom development.


Assuntos
Cianobactérias , Microcystis , Catalase/metabolismo , Cianobactérias/genética , Ecossistema , Proliferação Nociva de Algas , Humanos , Peróxido de Hidrogênio/metabolismo , Lagos/microbiologia , Microcistinas/metabolismo , Microcystis/genética , Microcystis/metabolismo
6.
Appl Environ Microbiol ; 88(9): e0246421, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35438519

RESUMO

Cyanobacterial harmful algal blooms (cyanoHABs) degrade freshwater ecosystems globally. Microcystis aeruginosa often dominates cyanoHABs and produces microcystin (MC), a class of hepatotoxins that poses threats to human and animal health. Microcystin toxicity is influenced by distinct structural elements across a diversity of related molecules encoded by variant mcy operons. However, the composition and distribution of mcy operon variants in natural blooms remain poorly understood. Here, we characterized the variant composition of mcy genes in western Lake Erie Microcystis blooms from 2014 and 2018. Sampling was conducted across several spatial and temporal scales, including different bloom phases within 2014, extensive spatial coverage on the same day (2018), and frequent, autonomous sampling over a 2-week period (2018). Mapping of metagenomic and metatranscriptomic sequences to reference sequences revealed three Microcystis mcy genotypes: complete (all genes present [mcyA-J]), partial (truncated mcyA, complete mcyBC, and missing mcyD-J), and absent (no mcy genes). We also detected two different variants of mcyB that may influence the production of microcystin congeners. The relative abundance of these genotypes was correlated with pH and nitrate concentrations. Metatranscriptomic analysis revealed that partial operons were, at times, the most abundant genotype and expressed in situ, suggesting the potential biosynthesis of truncated products. Quantification of genetic divergence between genotypes suggests that the observed strains are the result of preexisting heterogeneity rather than de novo mutation during the sampling period. Overall, our results show that natural Microcystis populations contain several cooccurring mcy genotypes that dynamically shift in abundance spatiotemporally via strain succession and likely influence the observed diversity of the produced congeners. IMPORTANCE Cyanobacteria are responsible for producing microcystins (MCs), a class of potent and structurally diverse toxins, in freshwater systems around the world. While microcystins have been studied for over 50 years, the diversity of their chemical forms and how this variation is encoded at the genetic level remain poorly understood, especially within natural populations of cyanobacterial harmful algal blooms (cyanoHABs). Here, we leverage community DNA and RNA sequences to track shifts in mcy genes responsible for producing microcystin, uncovering the relative abundance, expression, and variation of these genes. We studied this phenomenon in western Lake Erie, which suffers annually from cyanoHAB events, with impacts on drinking water, recreation, tourism, and commercial fishing.


Assuntos
Cianobactérias , Microcystis , Cianobactérias/genética , Ecossistema , Genótipo , Lagos/microbiologia , Microcistinas/genética , Microcistinas/metabolismo , Microcystis/genética , Microcystis/metabolismo , Óperon
7.
Environ Microbiol ; 23(3): 1481-1495, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33295079

RESUMO

Cross-feeding of metabolites between coexisting cells leads to complex and interconnected elemental cycling and microbial interactions. These relationships influence overall community function and can be altered by changes in substrate availability. Here, we used isotopic rate measurements and metagenomic sequencing to study how cross-feeding relationships changed in response to stepwise increases of sulfide concentrations in a membrane-aerated biofilm reactor that was fed with methane and ammonium. Results showed that sulfide: (i) decreased nitrite oxidation rates but increased ammonia oxidation rates; (ii) changed the denitrifying community and increased nitrous oxide production; and (iii) induced dissimilatory nitrite reduction to ammonium (DNRA). We infer that inhibition of nitrite oxidation resulted in higher nitrite availability for DNRA, anammox, and nitrite-dependent anaerobic methane oxidation. In other words, sulfide likely disrupted microbial cross-feeding between AOB and NOB and induced cross-feeding between AOB and nitrite reducing organisms. Furthermore, these cross-feeding relationships were spatially distributed between biofilm and planktonic phases of the reactor. These results indicate that using sulfide as an electron donor will promote N2 O and ammonium production, which is generally not desirable in engineered systems.


Assuntos
Compostos de Amônio , Metano , Anaerobiose , Biofilmes , Reatores Biológicos , Desnitrificação , Nitritos , Nitrogênio , Oxirredução , Sulfetos
8.
Environ Microbiol ; 23(6): 3020-3036, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33830633

RESUMO

Interactions between bacteria and phytoplankton in the phycosphere have impacts at the scale of whole ecosystems, including the development of harmful algal blooms. The cyanobacterium Microcystis causes toxic blooms that threaten freshwater ecosystems and human health globally. Microcystis grows in colonies that harbour dense assemblages of other bacteria, yet the taxonomic composition of these phycosphere communities and the nature of their interactions with Microcystis are not well characterized. To identify the taxa and compositional variance within Microcystis phycosphere communities, we performed 16S rRNA V4 region amplicon sequencing on individual Microcystis colonies collected biweekly via high-throughput droplet encapsulation during a western Lake Erie cyanobacterial bloom. The Microcystis phycosphere communities were distinct from microbial communities in whole water and bulk phytoplankton seston in western Lake Erie but lacked 'core' taxa found across all colonies. However, dissimilarity in phycosphere community composition correlated with sampling date and the Microcystis 16S rRNA oligotype. Several taxa in the phycosphere were specific to and conserved with Microcystis of a single oligotype or sampling date. Together, this suggests that physiological differences between Microcystis strains, temporal changes in strain phenotypes, and the composition of seeding communities may impact community composition of the Microcystis phycosphere.


Assuntos
Cianobactérias , Microbiota , Microcystis , Cianobactérias/genética , Lagos , Microbiota/genética , Microcystis/genética , RNA Ribossômico 16S/genética
9.
Environ Microbiol ; 23(3): 1422-1435, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33264477

RESUMO

Diatoms are among the few eukaryotes known to store nitrate (NO3 - ) and to use it as an electron acceptor for respiration in the absence of light and O2 . Using microscopy and 15 N stable isotope incubations, we studied the relationship between dissimilatory nitrate/nitrite reduction to ammonium (DNRA) and diel vertical migration of diatoms in phototrophic microbial mats and the underlying sediment of a sinkhole in Lake Huron (USA). We found that the diatoms rapidly accumulated NO3 - at the mat-water interface in the afternoon and 40% of the population migrated deep into the sediment, where they were exposed to dark and anoxic conditions for ~75% of the day. The vertical distribution of DNRA rates and diatom abundance maxima coincided, suggesting that DNRA was the main energy generating metabolism of the diatom population. We conclude that the illuminated redox-dynamic ecosystem selects for migratory diatoms that can store nitrate for respiration in the absence of light. A major implication of this study is that the dominance of DNRA over denitrification is not explained by kinetics or thermodynamics. Rather, the dynamic conditions select for migratory diatoms that perform DNRA and can outcompete sessile denitrifiers.


Assuntos
Compostos de Amônio , Diatomáceas , Desnitrificação , Diatomáceas/metabolismo , Ecossistema , Sedimentos Geológicos , Nitratos/análise , Nitrogênio , Respiração
10.
Environ Microbiol ; 23(12): 7278-7313, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34056822

RESUMO

Microcystis is a cyanobacterium that forms toxic blooms in freshwater ecosystems around the world. Biological variation among taxa within the genus is apparent through genetic and phenotypic differences between strains and via the spatial and temporal distribution of strains in the environment, and this fine-scale diversity exerts strong influence over bloom toxicity. Yet we do not know how varying traits of Microcystis strains govern their environmental distribution, the tradeoffs and links between these traits, or how they are encoded at the genomic level. Here we synthesize current knowledge on the importance of diversity within Microcystis and on the genes and traits that likely underpin ecological differentiation of taxa. We briefly review spatial and environmental patterns of Microcystis diversity in the field and genetic evidence for cohesive groups within Microcystis. We then compile data on strain-level diversity regarding growth responses to environmental conditions and explore evidence for variation of community interactions across Microcystis strains. Potential links and tradeoffs between traits are identified and discussed. The resulting picture, while incomplete, highlights key knowledge gaps that need to be filled to enable new models for predicting strain-level dynamics, which influence the development, toxicity and cosmopolitan nature of Microcystis blooms.


Assuntos
Cianobactérias , Microcystis , Ecossistema , Microcystis/genética
11.
Environ Microbiol ; 19(3): 1149-1162, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28026093

RESUMO

Human activities are causing a global proliferation of cyanobacterial harmful algal blooms (CHABs), yet we have limited understanding of how these events affect freshwater bacterial communities. Using weekly data from western Lake Erie in 2014, we investigated how the cyanobacterial community varied over space and time, and whether the bloom affected non-cyanobacterial (nc-bacterial) diversity and composition. Cyanobacterial community composition fluctuated dynamically during the bloom, but was dominated by Microcystis and Synechococcus OTUs. The bloom's progression revealed potential impacts to nc-bacterial diversity. Nc-bacterial evenness displayed linear, unimodal, or no response to algal pigment levels, depending on the taxonomic group. In addition, the bloom coincided with a large shift in nc-bacterial community composition. These shifts could be partitioned into components predicted by pH, chlorophyll a, temperature, and water mass movements. Actinobacteria OTUs showed particularly strong correlations to bloom dynamics. AcI-C OTUs became more abundant, while acI-A and acI-B OTUs declined during the bloom, providing evidence of niche partitioning at the sub-clade level. Thus, our observations in western Lake Erie support a link between CHABs and disturbances to bacterial community diversity and composition. Additionally, the short recovery of many taxa after the bloom indicates that bacterial communities may exhibit resilience to CHABs.


Assuntos
Cianobactérias/crescimento & desenvolvimento , Cianobactérias/isolamento & purificação , Proliferação Nociva de Algas , Clorofila/metabolismo , Clorofila A , Cianobactérias/classificação , Cianobactérias/genética , Humanos , Lagos/análise , Lagos/microbiologia , Movimentos da Água
12.
Acc Chem Res ; 49(1): 128-37, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26636984

RESUMO

The reactivity and mobility of natural particles in aquatic systems have wide ranging implications for the functioning of Earth surface systems. Particles in the ocean are biologically and chemically reactive, mobile, and complex in composition. The chemical composition of marine particles is thought to be central to understanding processes that convert globally relevant elements, such as C and Fe, among forms with varying bioavailability and mobility in the ocean. The analytical tools needed to measure the complex chemistry of natural particles are the subject of this Account. We describe how a suite of complementary synchrotron radiation instruments with nano- and micrometer focusing, and X-ray absorption spectroscopy (XAS) and X-ray diffraction (XRD) capabilities are changing our understanding of deep-ocean chemistry and life. Submarine venting along mid-ocean ridges creates hydrothermal plumes where dynamic particle-forming reactions occur as vent fluids mix with deep-ocean waters. Whether plumes are net sources or sinks of elements in ocean budgets depends in large part on particle formation, reactivity, and transport properties. Hydrothermal plume particles have been shown to host microbial communities and exhibit complex size distributions, aggregation behavior, and composition. X-ray microscope and microprobe instruments can address particle size and aggregation, but their true strength is in measuring chemical composition. Plume particles comprise a stunning array of inorganic and organic phases, from single-crystal sulfides to poorly ordered nanophases and polymeric organic matrices to microbial cells. X-ray microscopes and X-ray microprobes with elemental imaging, XAS, and XRD capabilities are ideal for investigating these complex materials because they can (1) measure the chemistry of organic and inorganic constituents in complex matrices, usually within the same particle or aggregate, (2) provide strong signal-to-noise data with exceedingly small amounts of material, (3) simplify the chemical complexity of particles or sets of particles with a focused-beam, providing spatial resolution over 6 orders of magnitude (nanometer to millimeter), (4) provide elemental specificity for elements in the soft-, tender-, and hard-X-ray energies, (5) switch rapidly among elements of interest, and (6) function in the presence of water and gases. Synchrotron derived data sets are discussed in the context of important advances in deep-ocean technology, sample handling and preservation, molecular microbiology, and coupled physical-chemical-biological modeling. Particle chemistry, size, and morphology are all important in determining whether particles are reactive with dissolved constituents, provide substrates for microbial respiration and growth, and are delivered to marine sediments or dispersed by deep-ocean currents.


Assuntos
Hidrocarbonetos/análise , Compostos de Ferro/análise , Nanopartículas/química , Oceanos e Mares , Água do Mar/química , Síncrotrons , Espectroscopia por Absorção de Raios X , Difração de Raios X , Nanotecnologia , Tamanho da Partícula , Temperatura
13.
Environ Sci Technol ; 51(12): 6745-6755, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28535339

RESUMO

Annual cyanobacterial blooms dominated by Microcystis have occurred in western Lake Erie (U.S./Canada) during summer months since 1995. The production of toxins by bloom-forming cyanobacteria can lead to drinking water crises, such as the one experienced by the city of Toledo in August of 2014, when the city was rendered without drinking water for >2 days. It is important to understand the conditions and environmental cues that were driving this specific bloom to provide a scientific framework for management of future bloom events. To this end, samples were collected and metatranscriptomes generated coincident with the collection of environmental metrics for eight sites located in the western basin of Lake Erie, including a station proximal to the water intake for the city of Toledo. These data were used to generate a basin-wide ecophysiological fingerprint of Lake Erie Microcystis populations in August 2014 for comparison to previous bloom communities. Our observations and analyses indicate that, at the time of sample collection, Microcystis populations were under dual nitrogen (N) and phosphorus (P) stress, as genes involved in scavenging of these nutrients were being actively transcribed. Targeted analysis of urea transport and hydrolysis suggests a potentially important role for exogenous urea as a nitrogen source during the 2014 event. Finally, simulation data suggest a wind event caused microcystin-rich water from Maumee Bay to be transported east along the southern shoreline past the Toledo water intake. Coupled with a significant cyanophage infection, these results reveal that a combination of biological and environmental factors led to the disruption of the Toledo water supply. This scenario was not atypical of reoccurring Lake Erie blooms and thus may reoccur in the future.


Assuntos
Microcystis , Abastecimento de Água , Canadá , Cianobactérias , Eutrofização , Lagos
14.
Proc Natl Acad Sci U S A ; 111(5): 1879-84, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24449851

RESUMO

Rapid advances in molecular microbial ecology have yielded an unprecedented amount of data about the evolutionary relationships and functional traits of microbial communities that regulate global geochemical cycles. Biogeochemical models, however, are trailing in the wake of the environmental genomics revolution, and such models rarely incorporate explicit representations of bacteria and archaea, nor are they compatible with nucleic acid or protein sequence data. Here, we present a functional gene-based framework for describing microbial communities in biogeochemical models by incorporating genomics data to provide predictions that are readily testable. To demonstrate the approach in practice, nitrogen cycling in the Arabian Sea oxygen minimum zone (OMZ) was modeled to examine key questions about cryptic sulfur cycling and dinitrogen production pathways in OMZs. Simulations support previous assertions that denitrification dominates over anammox in the central Arabian Sea, which has important implications for the loss of fixed nitrogen from the oceans. Furthermore, cryptic sulfur cycling was shown to attenuate the secondary nitrite maximum often observed in OMZs owing to changes in the composition of the chemolithoautotrophic community and dominant metabolic pathways. Results underscore the need to explicitly integrate microbes into biogeochemical models rather than just the metabolisms they mediate. By directly linking geochemical dynamics to the genetic composition of microbial communities, the method provides a framework for achieving mechanistic insights into patterns and biogeochemical consequences of marine microbes. Such an approach is critical for informing our understanding of the key role microbes play in modulating Earth's biogeochemistry.


Assuntos
Genes/genética , Metagenômica , Modelos Biológicos , Simulação por Computador , Sulfeto de Hidrogênio/metabolismo , Nitratos/metabolismo , Ciclo do Nitrogênio/genética , Oceanos e Mares , Oxirredução , Oxigênio/metabolismo
16.
Environ Microbiol ; 18(2): 358-71, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25627339

RESUMO

Metagenomic and metatranscriptomic sequencing was conducted on cyanobacterial mats of the Middle Island Sinkhole (MIS), Lake Huron. Metagenomic data from 14 samples collected over 5 years were used to reconstruct genomes of two genotypes of a novel virus, designated PhV1 type A and PhV1 type B. Both viral genotypes encode and express nblA, a gene involved in degrading phycobilisomes, which are complexes of pigmented proteins that harvest light for photosynthesis. Phylogenetic analysis indicated that the viral-encoded nblA is derived from the host cyanobacterium, Phormidium MIS-PhA. The cyanobacterial host also has two complete CRISPR (clustered regularly interspaced short palindromic repeats) systems that serve as defence mechanisms for bacteria and archaea against viruses and plasmids. One 45 bp CRISPR spacer from Phormidium had 100% nucleotide identity to PhV1 type B, but this region was absent from PhV1 type A. Transcripts from PhV1 and the Phormidium CRISPR loci were detected in all six metatranscriptomic data sets (three during the day and three at night), indicating that both are transcriptionally active in the environment. These results reveal ecological and genetic interactions between viruses and cyanobacteria at MIS, highlighting the value of parallel analysis of viruses and hosts in understanding ecological interactions in natural communities.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Cianobactérias/genética , Metagenômica , Ficobilissomas/metabolismo , Vírus/genética , Archaea/genética , Sequência de Bases , Ecologia , Genoma Bacteriano/genética , Genoma Viral/genética , Lagos/microbiologia , Oxigênio/metabolismo , Filogenia , Plasmídeos , Análise de Sequência de DNA
17.
Environ Microbiol ; 18(4): 1200-11, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26626228

RESUMO

Investigations of the biogeochemical roles of benthic Archaea in marine sediments are hampered by the scarcity of cultured representatives. In order to determine their metabolic capacity, we reconstructed the genomic content of four widespread uncultured benthic Archaea recovered from estuary sediments at 48% to 95% completeness. Four genomic bins were found to belong to different subgroups of the former Miscellaneous Crenarcheota Group (MCG) now called Bathyarchaeota: MCG-6, MCG-1, MCG-7/17 and MCG-15. Metabolic predictions based on gene content of the different genome bins indicate that subgroup 6 has the ability to hydrolyse extracellular plant-derived carbohydrates, and that all four subgroups can degrade detrital proteins. Genes encoding enzymes involved in acetate production as well as in the reductive acetyl-CoA pathway were detected in all four genomes inferring that these Archaea are organo-heterotrophic and autotrophic acetogens. Genes involved in nitrite reduction were detected in all Bathyarchaeota subgroups and indicate a potential for dissimilatory nitrite reduction to ammonium. Comparing the genome content of the different Bathyarchaeota subgroups indicated preferences for distinct types of carbohydrate substrates and implicitly, for different niches within the sedimentary environment.


Assuntos
Archaea , Metabolismo dos Carboidratos/genética , Carbono/metabolismo , Sedimentos Geológicos/microbiologia , Acetilcoenzima A/metabolismo , Archaea/classificação , Archaea/genética , Archaea/metabolismo , Carboidratos , DNA Arqueal/genética , Estuários , Genômica , Filogenia , RNA Ribossômico 16S/genética , Microbiologia do Solo , Microbiologia da Água
19.
Proc Natl Acad Sci U S A ; 110(1): 330-5, 2013 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-23263870

RESUMO

Hydrothermal vents are a well-known source of energy that powers chemosynthesis in the deep sea. Recent work suggests that microbial chemosynthesis is also surprisingly pervasive throughout the dark oceans, serving as a significant CO(2) sink even at sites far removed from vents. Ammonia and sulfur have been identified as potential electron donors for this chemosynthesis, but they do not fully account for measured rates of dark primary production in the pelagic water column. Here we use metagenomic and metatranscriptomic analyses to show that deep-sea populations of the SUP05 group of uncultured sulfur-oxidizing Gammaproteobacteria, which are abundant in widespread and diverse marine environments, contain and highly express genes encoding group 1 Ni, Fe hydrogenase enzymes for H(2) oxidation. Reconstruction of near-complete genomes of two cooccurring SUP05 populations in hydrothermal plumes and deep waters of the Gulf of California enabled detailed population-specific metatranscriptomic analyses, revealing dynamic patterns of gene content and transcript abundance. SUP05 transcripts for genes involved in H(2) and sulfur oxidation are most abundant in hydrothermal plumes where these electron donors are enriched. In contrast, a second hydrogenase has more abundant transcripts in background deep-sea samples. Coupled with results from a bioenergetic model that suggest that H(2) oxidation can contribute significantly to the SUP05 energy budget, these findings reveal the potential importance of H(2) as a key energy source in the deep ocean. This study also highlights the genomic plasticity of SUP05, which enables this widely distributed group to optimize its energy metabolism (electron donor and acceptor) to local geochemical conditions.


Assuntos
Metabolismo Energético/genética , Gammaproteobacteria/genética , Hidrogênio/metabolismo , Hidrogenase/genética , Fontes Hidrotermais/microbiologia , Proteínas Ferro-Enxofre/genética , Enxofre/metabolismo , Sequência de Bases , Gammaproteobacteria/metabolismo , Funções Verossimilhança , Metagenômica , Modelos Genéticos , Dados de Sequência Molecular , Oxirredução , Oceano Pacífico , Filogenia , Subunidades Ribossômicas Menores de Bactérias/genética , Análise de Sequência de DNA , Termodinâmica , Transcriptoma/genética
20.
Environ Microbiol ; 17(10): 3964-75, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26013440

RESUMO

Ecteinascidin 743 (ET-743, Yondelis) is a clinically approved chemotherapeutic natural product isolated from the Caribbean mangrove tunicate Ecteinascidia turbinata. Researchers have long suspected that a microorganism may be the true producer of the anticancer drug, but its genome has remained elusive due to our inability to culture the bacterium in the laboratory using standard techniques. Here, we sequenced and assembled the complete genome of the ET-743 producer, Candidatus Endoecteinascidia frumentensis, directly from metagenomic DNA isolated from the tunicate. Analysis of the ∼ 631 kb microbial genome revealed strong evidence of an endosymbiotic lifestyle and extreme genome reduction. Phylogenetic analysis suggested that the producer of the anti-cancer drug is taxonomically distinct from other sequenced microorganisms and could represent a new family of Gammaproteobacteria. The complete genome has also greatly expanded our understanding of ET-743 production and revealed new biosynthetic genes dispersed across more than 173 kb of the small genome. The gene cluster's architecture and its preservation demonstrate that the drug is likely essential to the interactions of the microorganism with its mangrove tunicate host. Taken together, these studies elucidate the lifestyle of a unique, and pharmaceutically important microorganism and highlight the wide diversity of bacteria capable of making potent natural products.


Assuntos
Dioxóis/metabolismo , Gammaproteobacteria/genética , Gammaproteobacteria/metabolismo , Genoma Bacteriano/genética , Tetra-Hidroisoquinolinas/metabolismo , Animais , Sequência de Bases , Produtos Biológicos , Região do Caribe , DNA Bacteriano/genética , Humanos , Família Multigênica , Filogenia , Análise de Sequência de DNA , Simbiose/genética , Trabectedina , Urocordados/microbiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA