Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 169(5): 807-823.e19, 2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28479188

RESUMO

Dormant hematopoietic stem cells (dHSCs) are atop the hematopoietic hierarchy. The molecular identity of dHSCs and the mechanisms regulating their maintenance or exit from dormancy remain uncertain. Here, we use single-cell RNA sequencing (RNA-seq) analysis to show that the transition from dormancy toward cell-cycle entry is a continuous developmental path associated with upregulation of biosynthetic processes rather than a stepwise progression. In addition, low Myc levels and high expression of a retinoic acid program are characteristic for dHSCs. To follow the behavior of dHSCs in situ, a Gprc5c-controlled reporter mouse was established. Treatment with all-trans retinoic acid antagonizes stress-induced activation of dHSCs by restricting protein translation and levels of reactive oxygen species (ROS) and Myc. Mice maintained on a vitamin A-free diet lose HSCs and show a disrupted re-entry into dormancy after exposure to inflammatory stress stimuli. Our results highlight the impact of dietary vitamin A on the regulation of cell-cycle-mediated stem cell plasticity. VIDEO ABSTRACT.


Assuntos
Células-Tronco Hematopoéticas/citologia , Transdução de Sinais , Tretinoína/farmacologia , Vitamina A/administração & dosagem , Animais , Vias Biossintéticas , Técnicas de Cultura de Células , Ciclo Celular/efeitos dos fármacos , Sobrevivência Celular , Dieta , Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/efeitos dos fármacos , Camundongos , Poli I-C/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Análise de Célula Única , Estresse Fisiológico , Vitamina A/farmacologia , Vitaminas/administração & dosagem , Vitaminas/farmacologia
2.
Nature ; 603(7901): 482-487, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35264795

RESUMO

Methane (CH4), the most abundant hydrocarbon in the atmosphere, originates largely from biogenic sources1 linked to an increasing number of organisms occurring in oxic and anoxic environments. Traditionally, biogenic CH4 has been regarded as the final product of anoxic decomposition of organic matter by methanogenic archaea. However, plants2,3, fungi4, algae5 and cyanobacteria6 can produce CH4 in the presence of oxygen. Although methanogens are known to produce CH4 enzymatically during anaerobic energy metabolism7, the requirements and pathways for CH4 production by non-methanogenic cells are poorly understood. Here, we demonstrate that CH4 formation by Bacillus subtilis and Escherichia coli is triggered by free iron and reactive oxygen species (ROS), which are generated by metabolic activity and enhanced by oxidative stress. ROS-induced methyl radicals, which are derived from organic compounds containing sulfur- or nitrogen-bonded methyl groups, are key intermediates that ultimately lead to CH4 production. We further show CH4 production by many other model organisms from the Bacteria, Archaea and Eukarya domains, including in several human cell lines. All these organisms respond to inducers of oxidative stress by enhanced CH4 formation. Our results imply that all living cells probably possess a common mechanism of CH4 formation that is based on interactions among ROS, iron and methyl donors, opening new perspectives for understanding biochemical CH4 formation and cycling.


Assuntos
Archaea , Euryarchaeota , Metano , Archaea/metabolismo , Linhagem Celular , Fenômenos Fisiológicos Celulares , Humanos , Ferro/metabolismo , Metano/química , Metano/metabolismo , Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Enxofre/metabolismo
3.
Proc Natl Acad Sci U S A ; 120(48): e2314043120, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-37991942

RESUMO

Hydrogen peroxide (H2O2) sensing and signaling involves the reversible oxidation of particular thiols on particular proteins to modulate protein function in a dynamic manner. H2O2 can be generated from various intracellular sources, but their identities and relative contributions are often unknown. To identify endogenous "hotspots" of H2O2 generation on the scale of individual proteins and protein complexes, we generated a yeast library in which the H2O2 sensor HyPer7 was fused to the C-terminus of all protein-coding open reading frames (ORFs). We also generated a control library in which a redox-insensitive mutant of HyPer7 (SypHer7) was fused to all ORFs. Both libraries were screened side-by-side to identify proteins located within H2O2-generating environments. Screening under a variety of different metabolic conditions revealed dynamic changes in H2O2 availability highly specific to individual proteins and protein complexes. These findings suggest that intracellular H2O2 generation is much more localized and functionally differentiated than previously recognized.


Assuntos
Técnicas Biossensoriais , Peróxido de Hidrogênio , Peróxido de Hidrogênio/metabolismo , Proteoma/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Oxirredução
4.
Nat Chem Biol ; 19(4): 507-517, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36732619

RESUMO

Protein S-persulfidation (P-SSH) is recognized as a common posttranslational modification. It occurs under basal conditions and is often observed to be elevated under stress conditions. However, the mechanism(s) by which proteins are persulfidated inside cells have remained unclear. Here we report that 3-mercaptopyruvate sulfur transferase (MPST) engages in direct protein-to-protein transpersulfidation reactions beyond its previously known protein substrates thioredoxin and MOCS3/Uba4, associated with H2S generation and transfer RNA thiolation, respectively. We observe that depletion of MPST in human cells lowers overall intracellular protein persulfidation levels and identify a subset of proteins whose persulfidation depends on MPST. The predicted involvement of these proteins in the adaptation to stress responses supports the notion that MPST-dependent protein persulfidation promotes cytoprotective functions. The observation of MPST-independent protein persulfidation suggests that other protein persulfidases remain to be identified.


Assuntos
Sulfurtransferases , Humanos , Cisteína , Sulfeto de Hidrogênio/metabolismo , Enxofre/metabolismo
5.
Nat Chem Biol ; 19(1): 28-37, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36109647

RESUMO

Ferroptosis is a type of cell death caused by radical-driven lipid peroxidation, leading to membrane damage and rupture. Here we show that enzymatically produced sulfane sulfur (S0) species, specifically hydropersulfides, scavenge endogenously generated free radicals and, thereby, suppress lipid peroxidation and ferroptosis. By providing sulfur for S0 biosynthesis, cysteine can support ferroptosis resistance independently of the canonical GPX4 pathway. Our results further suggest that hydropersulfides terminate radical chain reactions through the formation and self-recombination of perthiyl radicals. The autocatalytic regeneration of hydropersulfides may explain why low micromolar concentrations of persulfides suffice to produce potent cytoprotective effects on a background of millimolar concentrations of glutathione. We propose that increased S0 biosynthesis is an adaptive cellular response to radical-driven lipid peroxidation, potentially representing a primordial radical protection system.


Assuntos
Ferroptose , Peroxidação de Lipídeos , Morte Celular , Radicais Livres , Enxofre
6.
Mol Cell ; 59(4): 519-21, 2015 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-26295959

RESUMO

A sudden increase in pentose phosphate pathway (PPP) activity, the fastest known cellular response to oxidative stress, protects cells through timely generation of NADPH. Originally discovered in budding yeast, Kuehne and colleagues demonstrate the conservation of this mechanism in human cells and reveal its importance for skin cells exposed to UV light.


Assuntos
Proteínas de Transporte/metabolismo , Peróxido de Hidrogênio/farmacologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/efeitos da radiação , Proteínas de Membrana/metabolismo , Via de Pentose Fosfato/efeitos dos fármacos , Via de Pentose Fosfato/efeitos da radiação , Hormônios Tireóideos/metabolismo , Humanos
7.
Proc Natl Acad Sci U S A ; 117(28): 16313-16323, 2020 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-32601209

RESUMO

Peroxiredoxins are central to cellular redox homeostasis and signaling. They serve as peroxide scavengers, sensors, signal transducers, and chaperones, depending on conditions and context. Typical 2-Cys peroxiredoxins are known to switch between different oligomeric states, depending on redox state, pH, posttranslational modifications, and other factors. Quaternary states and their changes are closely connected to peroxiredoxin activity and function but so far have been studied, almost exclusively, outside the context of the living cell. Here we introduce the use of homo-FRET (Förster resonance energy transfer between identical fluorophores) fluorescence polarization to monitor dynamic changes in peroxiredoxin quaternary structure inside the crowded environment of living cells. Using the approach, we confirm peroxide- and thioredoxin-related quaternary transitions to take place in cellulo and observe that the relationship between dimer-decamer transitions and intersubunit disulfide bond formation is more complex than previously thought. Furthermore, we demonstrate the use of the approach to compare different peroxiredoxin isoforms and to identify mutations and small molecules affecting the oligomeric state inside cells. Mutagenesis experiments reveal that the dimer-decamer equilibrium is delicately balanced and can be shifted by single-atom structural changes. We show how to use this insight to improve the design of peroxiredoxin-based redox biosensors.


Assuntos
Peroxirredoxinas/química , Linhagem Celular , Transferência Ressonante de Energia de Fluorescência , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Humanos , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Proteínas Luminescentes/química , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Mutação , Peroxirredoxinas/genética , Peroxirredoxinas/metabolismo , Multimerização Proteica/efeitos dos fármacos , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo
8.
Angew Chem Int Ed Engl ; 62(24): e202216610, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37009775

RESUMO

Here we uncover collagen, the main structural protein of all connective tissues, as a redox-active material. We identify dihydroxyphenylalanine (DOPA) residues, post-translational oxidation products of tyrosine residues, to be common in collagen derived from different connective tissues. We observe that these DOPA residues endow collagen with substantial radical scavenging capacity. When reducing radicals, DOPA residues work as redox relay: they convert to the quinone and generate hydrogen peroxide. In this dual function, DOPA outcompetes its amino acid precursors and ascorbic acid. Our results establish DOPA residues as redox-active side chains of collagens, probably protecting connective tissues against radicals formed under mechanical stress and/or inflammation.


Assuntos
Di-Hidroxifenilalanina , Tirosina , Di-Hidroxifenilalanina/química , Tirosina/química , Colágeno/química , Oxirredução , Aminoácidos/metabolismo
9.
J Biol Chem ; 297(1): 100866, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34118234

RESUMO

Genetically encoded fluorescent H2O2 probes continue to advance the field of redox biology. Here, we compare the previously established peroxiredoxin-based H2O2 probe roGFP2-Tsa2ΔCR with the newly described OxyR-based H2O2 probe HyPer7, using yeast as the model system. Although not as sensitive as roGFP2-Tsa2ΔCR, HyPer7 is much improved relative to earlier HyPer versions, most notably by ratiometric pH stability. The most striking difference between the two probes is the dynamics of intracellular probe reduction. HyPer7 is rapidly reduced, predominantly by the thioredoxin system, whereas roGFP2-Tsa2ΔCR is reduced more slowly, predominantly by the glutathione system. We discuss the pros and cons of each probe and suggest that future side-by-side measurements with both probes may provide information on the relative activity of the two major cellular reducing systems.


Assuntos
Técnicas Biossensoriais/métodos , Proteínas de Escherichia coli/metabolismo , Peróxido de Hidrogênio/análise , Peroxirredoxinas/metabolismo , Proteínas Repressoras/metabolismo , Técnicas Biossensoriais/normas , Proteínas de Escherichia coli/genética , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Peróxido de Hidrogênio/metabolismo , Peroxidases/genética , Peroxidases/metabolismo , Peroxirredoxinas/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/genética , Saccharomyces cerevisiae , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
10.
Glia ; 70(11): 2045-2061, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35762739

RESUMO

Oligodendrocytes (ODCs) are myelinating cells of the central nervous system (CNS) supporting neuronal survival. Oxidants and mitochondrial dysfunction have been suggested as the main causes of ODC damage during neuroinflammation as observed in multiple sclerosis (MS). Nonetheless, the dynamics of this process remain unclear, thus hindering the design of neuroprotective therapeutic strategies. To decipher the spatio-temporal pattern of oxidative damage and dysfunction of ODC mitochondria in vivo, we created a novel mouse model in which ODCs selectively express the ratiometric H2 O2 biosensor mito-roGFP2-Orp1 allowing for quantification of redox changes in their mitochondria. Using 2-photon imaging of the exposed spinal cord, we observed significant mitochondrial oxidation in ODCs upon induction of the MS model experimental autoimmune encephalomyelitis (EAE). This redox change became already apparent during the preclinical phase of EAE prior to CNS infiltration of inflammatory cells. Upon clinical EAE development, mitochondria oxidation remained detectable and was associated with a significant impairment in organelle density and morphology. These alterations correlated with the proximity of ODCs to inflammatory lesions containing activated microglia/macrophages. During the chronic progression of EAE, ODC mitochondria maintained an altered morphology, but their oxidant levels decreased to levels observed in healthy mice. Taken together, our study implicates oxidative stress in ODC mitochondria as a novel pre-clinical sign of MS-like inflammation and demonstrates that evolving redox and morphological changes in mitochondria accompany ODC dysfunction during neuroinflammation.


Assuntos
Encefalomielite Autoimune Experimental , Esclerose Múltipla , Animais , Encefalomielite Autoimune Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Esclerose Múltipla/patologia , Doenças Neuroinflamatórias , Oligodendroglia/metabolismo , Oxirredução , Medula Espinal/metabolismo
11.
Angew Chem Int Ed Engl ; 61(30): e202203684, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35506673

RESUMO

Protein persulfides (R-S-SH) have emerged as a common post-translational modification. Detection and quantitation of protein persulfides requires trapping with alkylating agents. Here we show that alkylating agents differ dramatically in their ability to conserve the persulfide's sulfur-sulfur bond for subsequent detection by mass spectrometry. The two alkylating agents most commonly used in cell biology and biochemistry, N-ethylmaleimide and iodoacetamide, are found to be unsuitable for the purpose of conserving persulfides under biologically relevant conditions. The resulting persulfide adducts (R-S-S-Alk) rapidly convert into the corresponding thioethers (R-S-Alk) by donating sulfur to ambient nucleophilic acceptors. In contrast, certain other alkylating agents, in particular monobromobimane and N-t-butyl-iodoacetamide, generate stable alkylated persulfides. We propose that the nature of the alkylating agent determines the ability of the disulfide bond (R-S-S-Alk) to tautomerize into the thiosulfoxide (R-(S=S)-Alk), and/or the ability of nucleophiles to remove the sulfane sulfur atom from the thiosulfoxide.


Assuntos
Alquilantes , Sulfetos , Compostos Bicíclicos com Pontes , Iodoacetamida , Receptores Proteína Tirosina Quinases , Sulfetos/química , Enxofre/química
12.
Biol Chem ; 402(3): 223-237, 2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33055309

RESUMO

3-Mercaptopyruvate sulfurtransferase (MPST) catalyzes the desulfuration of 3-mercaptopyruvate to generate an enzyme-bound hydropersulfide. Subsequently, MPST transfers the persulfide's outer sulfur atom to proteins or small molecule acceptors. MPST activity is known to be involved in hydrogen sulfide generation, tRNA thiolation, protein urmylation and cyanide detoxification. Tissue-specific changes in MPST expression correlate with ageing and the development of metabolic disease. Deletion and overexpression experiments suggest that MPST contributes to oxidative stress resistance, mitochondrial respiratory function and the regulation of fatty acid metabolism. However, the role and regulation of MPST in the larger physiological context remain to be understood.


Assuntos
Enxofre/metabolismo , Sulfurtransferases/metabolismo , Animais , Cisteína/análogos & derivados , Cisteína/química , Cisteína/metabolismo , Humanos , Estrutura Molecular , Enxofre/química , Sulfurtransferases/química
13.
Nat Methods ; 15(8): 598-600, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29988096

RESUMO

Here we describe a C-SWAT library for high-throughput tagging of Saccharomyces cerevisiae open reading frames (ORFs). In 5,661 strains, we inserted an acceptor module after each ORF that can be efficiently replaced with tags or regulatory elements. We validated the library with targeted sequencing and tagged the proteome with bright fluorescent proteins to quantify the effect of heterologous transcription terminators on protein expression and to localize previously undetected proteins.


Assuntos
Genoma Fúngico , Biblioteca Genômica , Saccharomyces cerevisiae/genética , DNA Fúngico/genética , Sequenciamento de Nucleotídeos em Larga Escala , Fases de Leitura Aberta , Proteoma/genética , Proteômica , Proteínas de Saccharomyces cerevisiae/genética , Análise de Sequência de DNA , Sitios de Sequências Rotuladas
14.
Nature ; 520(7548): 549-52, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25707806

RESUMO

Haematopoietic stem cells (HSCs) are responsible for the lifelong production of blood cells. The accumulation of DNA damage in HSCs is a hallmark of ageing and is probably a major contributing factor in age-related tissue degeneration and malignant transformation. A number of accelerated ageing syndromes are associated with defective DNA repair and genomic instability, including the most common inherited bone marrow failure syndrome, Fanconi anaemia. However, the physiological source of DNA damage in HSCs from both normal and diseased individuals remains unclear. Here we show in mice that DNA damage is a direct consequence of inducing HSCs to exit their homeostatic quiescent state in response to conditions that model physiological stress, such as infection or chronic blood loss. Repeated activation of HSCs out of their dormant state provoked the attrition of normal HSCs and, in the case of mice with a non-functional Fanconi anaemia DNA repair pathway, led to a complete collapse of the haematopoietic system, which phenocopied the highly penetrant bone marrow failure seen in Fanconi anaemia patients. Our findings establish a novel link between physiological stress and DNA damage in normal HSCs and provide a mechanistic explanation for the universal accumulation of DNA damage in HSCs during ageing and the accelerated failure of the haematopoietic system in Fanconi anaemia patients.


Assuntos
Ciclo Celular , Dano ao DNA , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Animais , Medula Óssea/patologia , Morte Celular , Proliferação de Células , Anemia de Fanconi/metabolismo , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Estresse Fisiológico
15.
Nat Chem Biol ; 14(2): 148-155, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29251718

RESUMO

Hydrogen peroxide (H2O2) acts as a signaling messenger by triggering the reversible oxidation of redox-regulated proteins. It remains unclear how proteins can be oxidized by signaling levels of H2O2 in the presence of peroxiredoxins, which are highly efficient peroxide scavengers. Here we show that the rapid formation of disulfide bonds in cytosolic proteins is enabled, rather than competed, by cytosolic 2-Cys peroxiredoxins. Under the conditions tested, the combined deletion or depletion of cytosolic peroxiredoxins broadly frustrated H2O2-dependent protein thiol oxidation, which is the exact opposite of what would be predicted based on the assumption that H2O2 oxidizes proteins directly. We find that peroxiredoxins enable rapid and sensitive protein thiol oxidation by relaying H2O2-derived oxidizing equivalents to other proteins. Although these findings do not rule out the existence of Prx-independent H2O2 signaling mechanisms, they suggest a broader role for peroxiredoxins as sensors and transmitters of H2O2 signals than hitherto recognized.


Assuntos
Cisteína/química , Citosol/química , Peróxido de Hidrogênio/química , Oxigênio/química , Peroxirredoxinas/química , Compostos de Sulfidrila/química , Dissulfetos/química , Células HEK293 , Humanos , Cinética , Oxirredução , RNA Interferente Pequeno/genética , Proteínas Recombinantes/química , Transdução de Sinais , Tiorredoxinas/química
16.
Biogerontology ; 21(2): 173-174, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31989363

RESUMO

The article Alternative NADH dehydrogenase extends lifespan and increases resistance to xenobiotics in Drosophila, written by Dmytro V. Gospodaryov. Olha M. Strilbytska. Uliana V. Semaniuk. Natalia V. Perkhulyn. Bohdana M. Rovenko. Ihor S. Yurkevych. Ana G. Barata. Tobias P. Dick. Oleh V. Lushchak and Howard T. Jacobs, was originally published electronically on the publisher's internet portal on 20 November 2019 without open access. With the author(s)' decision to opt for Open Choice the copyright of the article changed on 27 January 2020 to © The Author(s) 2020 and the article is forthwith distributed under a Creative Commons Attribution 4.0 International License (https://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The original article has been corrected.

17.
Biogerontology ; 21(2): 155-171, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31749111

RESUMO

Mitochondrial alternative NADH dehydrogenase (aNDH) was found to extend lifespan when expressed in the fruit fly. We have found that fruit flies expressing aNDH from Ciona intestinalis (NDX) had 17-71% lifespan prolongation on media with different protein-tocarbohydrate ratios except NDX-expressing males that had 19% shorter lifespan than controls on a high protein diet. NDX-expressing flies were more resistant to organic xenobiotics, 2,4-dichlorophenoxyacetic acid and alloxan, and inorganic toxicant potassium iodate, and partially to sodium molybdate treatments. On the other hand, NDX-expressing flies were more sensitive to catechol and sodium chromate. Enzymatic analysis showed that NDX-expressing males had higher glucose 6-phosphate dehydrogenase activity, whilst both sexes showed increased glutathione S-transferase activity.


Assuntos
Ciona intestinalis/enzimologia , Drosophila melanogaster/efeitos dos fármacos , Drosophila melanogaster/enzimologia , Resistência a Medicamentos , Metabolismo Energético , Longevidade , NADH Desidrogenase/metabolismo , Xenobióticos/farmacologia , Animais , Animais Geneticamente Modificados , Ciona intestinalis/genética , Drosophila melanogaster/genética , Resistência a Medicamentos/genética , Metabolismo Energético/genética , Feminino , Regulação da Expressão Gênica , Longevidade/genética , Masculino , NADH Desidrogenase/genética , Fatores Sexuais
18.
J Cell Sci ; 130(4): 791-804, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28049721

RESUMO

Peroxisomes are cellular organelles with vital functions in lipid, amino acid and redox metabolism. The cellular formation and dynamics of peroxisomes are governed by PEX genes; however, the regulation of peroxisome abundance is still poorly understood. Here, we use a high-content microscopy screen in Saccharomyces cerevisiae to identify new regulators of peroxisome size and abundance. Our screen led to the identification of a previously uncharacterized gene, which we term PEX35, which affects peroxisome abundance. PEX35 encodes a peroxisomal membrane protein, a remote homolog to several curvature-generating human proteins. We systematically characterized the genetic and physical interactome as well as the metabolome of mutants in PEX35, and we found that Pex35 functionally interacts with the vesicle-budding-inducer Arf1. Our results highlight the functional interaction between peroxisomes and the secretory pathway.


Assuntos
Proteínas de Membrana/metabolismo , Peroxissomos/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Epistasia Genética , Deleção de Genes , Genes Fúngicos , Microscopia , Saccharomyces cerevisiae/genética
19.
Nat Chem Biol ; 12(6): 437-43, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27089028

RESUMO

Genetically encoded probes based on the H2O2-sensing proteins OxyR and Orp1 have greatly increased the ability to detect elevated H2O2 levels in stimulated or stressed cells. However, these proteins are not sensitive enough to monitor metabolic H2O2 baseline levels. Using yeast as a platform for probe development, we developed two peroxiredoxin-based H2O2 probes, roGFP2-Tsa2ΔCR and roGFP2-Tsa2ΔCPΔCR, that afford such sensitivity. These probes are ∼50% oxidized under 'normal' unstressed conditions and are equally responsive to increases and decreases in H2O2. Hence, they permit fully dynamic, real-time measurement of basal H2O2 levels, with subcellular resolution, in living cells. We demonstrate that expression of these probes does not alter endogenous H2O2 homeostasis. The roGFP2-Tsa2ΔCR probe revealed real-time interplay between basal H2O2 levels and partial oxygen pressure. Furthermore, it exposed asymmetry in H2O2 trafficking between the cytosol and mitochondrial matrix and a strong correlation between matrix H2O2 levels and cellular growth rate.


Assuntos
Peróxido de Hidrogênio/análise , Peróxido de Hidrogênio/metabolismo , Sondas Moleculares/metabolismo , Peroxirredoxinas/metabolismo , Citosol/metabolismo , Homeostase , Mitocôndrias/metabolismo , Oxigênio/metabolismo , Pressão Parcial , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/crescimento & desenvolvimento , Saccharomyces cerevisiae/metabolismo , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA