Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nucleic Acids Res ; 49(21): 12211-12233, 2021 12 02.
Artigo em Inglês | MEDLINE | ID: mdl-34865122

RESUMO

Subunits of the chromatin remodeler SWI/SNF are the most frequently disrupted genes in cancer. However, how post-translational modifications (PTM) of SWI/SNF subunits elicit epigenetic dysfunction remains unknown. Arginine-methylation of BAF155 by coactivator-associated arginine methyltransferase 1 (CARM1) promotes triple-negative breast cancer (TNBC) metastasis. Herein, we discovered the dual roles of methylated-BAF155 (me-BAF155) in promoting tumor metastasis: activation of super-enhancer-addicted oncogenes by recruiting BRD4, and repression of interferon α/γ pathway genes to suppress host immune response. Pharmacological inhibition of CARM1 and BAF155 methylation not only abrogated the expression of an array of oncogenes, but also boosted host immune responses by enhancing the activity and tumor infiltration of cytotoxic T cells. Moreover, strong me-BAF155 staining was detected in circulating tumor cells from metastatic cancer patients. Despite low cytotoxicity, CARM1 inhibitors strongly inhibited TNBC cell migration in vitro, and growth and metastasis in vivo. These findings illustrate a unique mechanism of arginine methylation of a SWI/SNF subunit that drives epigenetic dysregulation, and establishes me-BAF155 as a therapeutic target to enhance immunotherapy efficacy.


Assuntos
Imunoterapia/métodos , Metástase Neoplásica/imunologia , Fatores de Transcrição/imunologia , Neoplasias de Mama Triplo Negativas , Animais , Proteínas de Ciclo Celular/imunologia , Linhagem Celular , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos NOD , Camundongos SCID , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/imunologia
2.
Cancer Res ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990731

RESUMO

Hypoxia is a common feature of many solid tumors due to aberrant proliferation and angiogenesis that is associated with tumor progression and metastasis. Most of the well-known hypoxia effects are mediated through hypoxia-inducible factors (HIFs). Identification of the long-lasting effects of hypoxia beyond the immediate HIF-induced alterations could provide a better understanding of hypoxia-driven metastasis and potential strategies to circumvent it. Here, we uncovered a hypoxia-induced mechanism that exerts a prolonged effect to promote metastasis. In breast cancer patient-derived circulating tumor cell (CTC) lines and common breast cancer cell lines, hypoxia downregulated tumor intrinsic type I interferon (IFN) signaling and its downstream antigen presentation (AP) machinery in luminal breast cancer cells, via both HIF-dependent and HIF-independent mechanisms. Hypoxia induced durable IFN/AP suppression in certain cell types that was sustained after returning to normoxic conditions, presenting a "hypoxic memory" phenotype. Hypoxic memory of IFN/AP downregulation was established by specific hypoxic priming, and cells with hypoxic memory had an enhanced ability for tumorigenesis and metastasis. Overexpression of IRF3 enhanced IFN signaling and reduced tumor growth in normoxic, but not hypoxic, conditions. The histone deacetylase inhibitor (HDACi) entinostat upregulated IFN targets and erased the hypoxic memory. These results point to a mechanism by which hypoxia facilitates tumor progression through a long-lasting memory that provides advantages for CTCs during the metastatic cascade.

3.
Cancers (Basel) ; 15(10)2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37345005

RESUMO

Using previously established CTC lines from breast cancer patients, we identified different morphometric subgroups of CTCs with one of them having the highest tumorigenic potential in vivo despite the slowest cell proliferation in vitro. This subgroup represents 32% of all cells and contains cells with small cell volume, large nucleus to cell, dense nuclear areas to the nucleus, mitochondria to cell volume ratios and rough texture of cell membrane and termed "Small cell, Large mitochondria, Rough membrane" (SLR). RNA-seq analyses showed that the SLR group is enriched in pathways and cellular processes related to DNA replication, DNA repair and metabolism. SLR upregulated genes are associated with poor survival in patients with ER+ breast cancer based on the KM Plotter database. The high tumorigenic potential, slow proliferation, and enriched DNA replication/repair pathways suggest that the SLR subtype is associated with stemness properties. Our new findings provide a simple image-based identification of CTC subpopulations with elevated aggressiveness, which is expected to provide a more accurate prediction of patient survival and therapy response than total CTC numbers. The detection of morphometric and transcriptomic profiles related to the SLR subgroup of CTCs also opens opportunities for potential targeted cancer treatment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA