Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ann Neurol ; 95(3): 495-506, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38038976

RESUMO

OBJECTIVE: Biomarkers of Alzheimer disease vary between groups of self-identified Black and White individuals in some studies. This study examined whether the relationships between biomarkers or between biomarkers and cognitive measures varied by racialized groups. METHODS: Cerebrospinal fluid (CSF), amyloid positron emission tomography (PET), and magnetic resonance imaging measures were harmonized across four studies of memory and aging. Spearman correlations between biomarkers and between biomarkers and cognitive measures were calculated within each racialized group, then compared between groups by standard normal tests after Fisher's Z-transformations. RESULTS: The harmonized dataset included at least one biomarker measurement from 495 Black and 2,600 White participants. The mean age was similar between racialized groups. However, Black participants were less likely to have cognitive impairment (28% vs 36%) and had less abnormality of some CSF biomarkers including CSF Aß42/40, total tau, p-tau181, and neurofilament light. CSF Aß42/40 was negatively correlated with total tau and p-tau181 in both groups, but at a smaller magnitude in Black individuals. CSF Aß42/40, total tau, and p-tau181 had weaker correlations with cognitive measures, especially episodic memory, in Black than White participants. Correlations of amyloid measures between CSF (Aß42/40, Aß42) and PET imaging were also weaker in Black than White participants. Importantly, no differences based on race were found in correlations between different imaging biomarkers, or in correlations between imaging biomarkers and cognitive measures. INTERPRETATION: Relationships between CSF biomarkers but not imaging biomarkers varied by racialized groups. Imaging biomarkers performed more consistently across racialized groups in associations with cognitive measures. ANN NEUROL 2024;95:495-506.


Assuntos
Doença de Alzheimer , Cognição , Disfunção Cognitiva , Humanos , Doença de Alzheimer/líquido cefalorraquidiano , Peptídeos beta-Amiloides/líquido cefalorraquidiano , Biomarcadores/líquido cefalorraquidiano , Disfunção Cognitiva/diagnóstico por imagem , Disfunção Cognitiva/líquido cefalorraquidiano , Fragmentos de Peptídeos/líquido cefalorraquidiano , Tomografia por Emissão de Pósitrons , Proteínas tau/líquido cefalorraquidiano , Negro ou Afro-Americano , Brancos
2.
Neuroimage ; 285: 120494, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38086495

RESUMO

White matter hyperintensities (WMH) are nearly ubiquitous in the aging brain, and their topography and overall burden are associated with cognitive decline. Given their numerosity, accurate methods to automatically segment WMH are needed. Recent developments, including the availability of challenge data sets and improved deep learning algorithms, have led to a new promising deep-learning based automated segmentation model called TrUE-Net, which has yet to undergo rigorous independent validation. Here, we compare TrUE-Net to six established automated WMH segmentation tools, including a semi-manual method. We evaluated the techniques at both global and regional level to compare their ability to detect the established relationship between WMH burden and age. We found that TrUE-Net was highly reliable at identifying WMH regions with low false positive rates, when compared to semi-manual segmentation as the reference standard. TrUE-Net performed similarly or favorably when compared to the other automated techniques. Moreover, TrUE-Net was able to detect relationships between WMH and age to a similar degree as the reference standard semi-manual segmentation at both the global and regional level. These results support the use of TrUE-Net for identifying WMH at the global or regional level, including in large, combined datasets.


Assuntos
Leucoaraiose , Substância Branca , Humanos , Substância Branca/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Encéfalo/diagnóstico por imagem , Algoritmos , Envelhecimento
3.
J Neurooncol ; 169(1): 175-185, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38789843

RESUMO

PURPOSE: High-grade glioma (HGG) is the most common and deadly malignant glioma of the central nervous system. The current standard of care includes surgical resection of the tumor, which can lead to functional and cognitive deficits. The aim of this study is to develop models capable of predicting functional outcomes in HGG patients before surgery, facilitating improved disease management and informed patient care. METHODS: Adult HGG patients (N = 102) from the neurosurgery brain tumor service at Washington University Medical Center were retrospectively recruited. All patients completed structural neuroimaging and resting state functional MRI prior to surgery. Demographics, measures of resting state network connectivity (FC), tumor location, and tumor volume were used to train a random forest classifier to predict functional outcomes based on Karnofsky Performance Status (KPS < 70, KPS ≥ 70). RESULTS: The models achieved a nested cross-validation accuracy of 94.1% and an AUC of 0.97 in classifying KPS. The strongest predictors identified by the model included FC between somatomotor, visual, auditory, and reward networks. Based on location, the relation of the tumor to dorsal attention, cingulo-opercular, and basal ganglia networks were strong predictors of KPS. Age was also a strong predictor. However, tumor volume was only a moderate predictor. CONCLUSION: The current work demonstrates the ability of machine learning to classify postoperative functional outcomes in HGG patients prior to surgery accurately. Our results suggest that both FC and the tumor's location in relation to specific networks can serve as reliable predictors of functional outcomes, leading to personalized therapeutic approaches tailored to individual patients.


Assuntos
Neoplasias Encefálicas , Glioma , Aprendizado de Máquina , Imageamento por Ressonância Magnética , Humanos , Masculino , Glioma/cirurgia , Glioma/diagnóstico por imagem , Glioma/patologia , Feminino , Imageamento por Ressonância Magnética/métodos , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/patologia , Pessoa de Meia-Idade , Adulto , Estudos Retrospectivos , Idoso , Descanso , Prognóstico , Gradação de Tumores , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia , Encéfalo/patologia , Encéfalo/fisiopatologia
4.
J Neurooncol ; 164(2): 309-320, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37668941

RESUMO

PURPOSE: Glioblastoma (GBM) is the most common and aggressive malignant glioma, with an overall median survival of less than two years. The ability to predict survival before treatment in GBM patients would lead to improved disease management, clinical trial enrollment, and patient care. METHODS: GBM patients (N = 133, mean age 60.8 years, median survival 14.1 months, 57.9% male) were retrospectively recruited from the neurosurgery brain tumor service at Washington University Medical Center. All patients completed structural neuroimaging and resting state functional MRI (RS-fMRI) before surgery. Demographics, measures of cortical thickness (CT), and resting state functional network connectivity (FC) were used to train a deep neural network to classify patients based on survival (< 1y, 1-2y, >2y). Permutation feature importance identified the strongest predictors of survival based on the trained models. RESULTS: The models achieved a combined cross-validation and hold out accuracy of 90.6% in classifying survival (< 1y, 1-2y, >2y). The strongest demographic predictors were age at diagnosis and sex. The strongest CT predictors of survival included the superior temporal sulcus, parahippocampal gyrus, pericalcarine, pars triangularis, and middle temporal regions. The strongest FC features primarily involved dorsal and inferior somatomotor, visual, and cingulo-opercular networks. CONCLUSION: We demonstrate that machine learning can accurately classify survival in GBM patients based on multimodal neuroimaging before any surgical or medical intervention. These results were achieved without information regarding presentation symptoms, treatments, postsurgical outcomes, or tumor genomic information. Our results suggest GBMs have a global effect on the brain's structural and functional organization, which is predictive of survival.


Assuntos
Glioblastoma , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Glioblastoma/diagnóstico por imagem , Glioblastoma/terapia , Estudos Retrospectivos , Imageamento por Ressonância Magnética/métodos , Neuroimagem , Aprendizado de Máquina
5.
Proc Natl Acad Sci U S A ; 117(7): 3808-3818, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-32015137

RESUMO

The amygdala is central to the pathophysiology of many psychiatric illnesses. An imprecise understanding of how the amygdala fits into the larger network organization of the human brain, however, limits our ability to create models of dysfunction in individual patients to guide personalized treatment. Therefore, we investigated the position of the amygdala and its functional subdivisions within the network organization of the brain in 10 highly sampled individuals (5 h of fMRI data per person). We characterized three functional subdivisions within the amygdala of each individual. We discovered that one subdivision is preferentially correlated with the default mode network; a second is preferentially correlated with the dorsal attention and fronto-parietal networks; and third subdivision does not have any networks to which it is preferentially correlated relative to the other two subdivisions. All three subdivisions are positively correlated with ventral attention and somatomotor networks and negatively correlated with salience and cingulo-opercular networks. These observations were replicated in an independent group dataset of 120 individuals. We also found substantial across-subject variation in the distribution and magnitude of amygdala functional connectivity with the cerebral cortex that related to individual differences in the stereotactic locations both of amygdala subdivisions and of cortical functional brain networks. Finally, using lag analyses, we found consistent temporal ordering of fMRI signals in the cortex relative to amygdala subdivisions. Altogether, this work provides a detailed framework of amygdala-cortical interactions that can be used as a foundation for models relating aberrations in amygdala connectivity to psychiatric symptoms in individual patients.


Assuntos
Tonsila do Cerebelo/fisiologia , Adulto , Tonsila do Cerebelo/diagnóstico por imagem , Atenção , Encéfalo/diagnóstico por imagem , Encéfalo/fisiopatologia , Mapeamento Encefálico , Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/fisiologia , Feminino , Humanos , Individualidade , Imageamento por Ressonância Magnética , Masculino , Psiquiatria , Adulto Jovem
6.
Proc Natl Acad Sci U S A ; 115(12): 3156-3161, 2018 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-29507201

RESUMO

During the third trimester of human brain development, the cerebral cortex undergoes dramatic surface expansion and folding. Physical models suggest that relatively rapid growth of the cortical gray matter helps drive this folding, and structural data suggest that growth may vary in both space (by region on the cortical surface) and time. In this study, we propose a unique method to estimate local growth from sequential cortical reconstructions. Using anatomically constrained multimodal surface matching (aMSM), we obtain accurate, physically guided point correspondence between younger and older cortical reconstructions of the same individual. From each pair of surfaces, we calculate continuous, smooth maps of cortical expansion with unprecedented precision. By considering 30 preterm infants scanned two to four times during the period of rapid cortical expansion (28-38 wk postmenstrual age), we observe significant regional differences in growth across the cortical surface that are consistent with the emergence of new folds. Furthermore, these growth patterns shift over the course of development, with noninjured subjects following a highly consistent trajectory. This information provides a detailed picture of dynamic changes in cortical growth, connecting what is known about patterns of development at the microscopic (cellular) and macroscopic (folding) scales. Since our method provides specific growth maps for individual brains, we are also able to detect alterations due to injury. This fully automated surface analysis, based on tools freely available to the brain-mapping community, may also serve as a useful approach for future studies of abnormal growth due to genetic disorders, injury, or other environmental variables.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Córtex Cerebral/crescimento & desenvolvimento , Córtex Cerebral/anormalidades , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Recém-Nascido Prematuro , Imageamento por Ressonância Magnética/métodos , Masculino
7.
Neuroimage ; 144(Pt B): 270-274, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27074495

RESUMO

We report on a new neuroimaging database, BALSA, that is a repository for extensively analyzed neuroimaging datasets from humans and nonhuman primates. BALSA is organized into two distinct sections. BALSA Reference is a curated repository of reference data accurately mapped to brain atlas surfaces and volumes, including various types of anatomically and functionally derived spatial maps as well as brain connectivity. BALSA Studies is a repository of extensively analyzed neuroimaging and neuroanatomical datasets associated with specific published studies, as voluntarily submitted by authors. It is particularly well suited for sharing of neuroimaging data as displayed in published figures. Uploading and downloading of data to BALSA involves 'scene' files that replicate how datasets appear in Connectome Workbench visualization software. Altogether, BALSA offers efficient access to richly informative datasets that are related to but transcend the images available in scientific publications.


Assuntos
Atlas como Assunto , Mapeamento Encefálico , Bases de Dados Factuais , Conjuntos de Dados como Assunto , Neuroimagem , Primatas , Animais , Humanos
8.
Neuroimage ; 125: 780-790, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26550941

RESUMO

We evaluated 22 measures of cortical folding, 20 derived from local curvature (curvature-based measures) and two based on other features (sulcal depth and gyrification index), for their capacity to distinguish between normal and aberrant cortical development. Cortical surfaces were reconstructed from 12 term-born control and 63 prematurely-born infants. Preterm infants underwent 2-4 MR imaging sessions between 27 and 42weeks postmenstrual age (PMA). Term infants underwent a single MR imaging session during the first postnatal week. Preterm infants were divided into two groups. One group (38 infants) had no/minimal abnormalities on qualitative assessment of conventional MR images. The second group (25 infants) consisted of infants with injury on conventional MRI at term equivalent PMA. For both preterm infant groups, all folding measures increased or decreased monotonically with increasing PMA, but only sulcal depth and gyrification index differentiated preterm infants with brain injury from those without. We also compared scans obtained at term equivalent PMA (36-42weeks) for all three groups. No curvature-based measured distinguished between the groups, whereas sulcal depth distinguished term control from injured preterm infants and gyrification index distinguished all three groups. When incorporating total cerebral volume into the statistical model, sulcal depth no longer distinguished between the groups, though gyrification index distinguished between all three groups and positive shape index distinguished between the term control and uninjured preterm groups. We also analyzed folding measures averaged over brain lobes separately. These results demonstrated similar patterns to those obtained from the whole brain analyses. Overall, though the curvature-based measures changed during this period of rapid cerebral development, they were not sensitive for detecting the differences in folding associated with brain injury and/or preterm birth. In contrast, gyrification index was effective in differentiating these groups.


Assuntos
Mapeamento Encefálico/métodos , Córtex Cerebral/crescimento & desenvolvimento , Recém-Nascido Prematuro/crescimento & desenvolvimento , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Recém-Nascido , Imageamento por Ressonância Magnética/métodos , Masculino
9.
Ann Neurol ; 77(1): 154-62, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25425403

RESUMO

OBJECTIVE: This study was undertaken to evaluate the influence of preterm birth and other factors on cerebral cortical maturation. METHODS: We have evaluated the effects of preterm birth on cortical folding by applying cortical cartography methods to a cohort of 52 preterm infants (<31 weeks gestation, mild or no injury on conventional magnetic resonance imaging) and 12 term-born control infants. All infants were evaluated at term-equivalent postmenstrual age. RESULTS: Preterm infants had lower values for the global measures of gyrification index (GI; 2.06 ± 0.07 vs 1.80 ± 0.12, p < 0.001; control vs preterm) and cortical surface area (CSA; 316 ± 24 cm(2) vs 257 ± 40 cm(2) , p < 0.001). Regional analysis of sulcal depth and cortical shape showed the greatest impact of preterm birth on the insula, superior temporal sulcus, and ventral portions of the pre- and postcentral sulci in both hemispheres. Although CSA and GI are related, CSA was more sensitive to antenatal and postnatal factors than GI. Both measures were lower in preterm infants of lower birth weight standard deviation scores and smaller occipitofrontal circumference at time of scan, whereas CSA alone was lower in association with smaller occipitofrontal circumference at birth. CSA was also lower in infants with higher critical illness in the first 24 hours of life, exposure to postnatal steroids, and prolonged endotracheal intubation. INTERPRETATION: Preterm birth disrupts cortical development in a regionally specific fashion with abnormalities evident by term-equivalent postmenstrual age. This disruption is influenced by both antenatal growth and postnatal course.


Assuntos
Córtex Cerebral/patologia , Recém-Nascido Prematuro , Nascimento Prematuro/patologia , Feminino , Lateralidade Funcional , Idade Gestacional , Humanos , Processamento de Imagem Assistida por Computador , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino
10.
Cereb Cortex ; 25(4): 1042-51, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24165833

RESUMO

We used surface-based morphometry to test for differences in cortical shape between children with simplex autism (n = 34, mean age 11.4 years) and typical children (n = 32, mean age 11.3 years). This entailed testing for group differences in sulcal depth and in 3D coordinates after registering cortical midthickness surfaces to an atlas target using 2 independent registration methods. We identified bilateral differences in sulcal depth in restricted portions of the anterior-insula and frontal-operculum (aI/fO) and in the temporoparietal junction (TPJ). The aI/fO depth differences are associated with and likely to be caused by a shape difference in the inferior frontal gyrus in children with simplex autism. Comparisons of average midthickness surfaces of children with simplex autism and those of typical children suggest that the significant sulcal depth differences represent local peaks in a larger pattern of regional differences that are below statistical significance when using coordinate-based analysis methods. Cortical regions that are statistically significant before correction for multiple measures are peaks of more extended, albeit subtle regional differences that may guide hypothesis generation for studies using other imaging modalities.


Assuntos
Transtorno Autístico/patologia , Córtex Cerebral/patologia , Criança , Feminino , Lateralidade Funcional , Humanos , Processamento de Imagem Assistida por Computador , Testes de Inteligência , Imageamento por Ressonância Magnética , Masculino , Tamanho do Órgão , Escalas de Graduação Psiquiátrica
11.
Neuroimage ; 109: 469-79, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25614973

RESUMO

We analyzed long-lasting alterations in brain morphometry associated with preterm birth using volumetric and surface-based analyses applied to children at age 7 years. Comparison of 24 children born very preterm (VPT) to 24 healthy term-born children revealed reductions in total cortical gray matter volume, white matter volume, cortical surface area and gyrification index. Regional cortical shape abnormalities in VPT children included the following: shallower anterior superior temporal sulci, smaller relative surface area in the inferior sensori-motor cortex and posterior superior temporal cortex, larger relative surface area and a cingulate sulcus that was shorter or more interrupted in medial frontoparietal cortex. These findings indicate a complex pattern of regional vulnerabilities in brain development that may contribute to the diverse and long-lasting neurobehavioral consequences that can occur after very premature birth.


Assuntos
Córtex Cerebral/patologia , Substância Cinzenta/patologia , Substância Branca/patologia , Córtex Cerebral/crescimento & desenvolvimento , Criança , Feminino , Substância Cinzenta/crescimento & desenvolvimento , Humanos , Lactente Extremamente Prematuro , Imageamento por Ressonância Magnética , Masculino , Substância Branca/crescimento & desenvolvimento
12.
Neuroimage ; 99: 509-24, 2014 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24971513

RESUMO

We generated probabilistic area maps and maximum probability maps (MPMs) for a set of 18 retinotopic areas previously mapped in individual subjects (Georgieva et al., 2009 and Kolster et al., 2010) using four different inter-subject registration methods. The best results were obtained using a recently developed multimodal surface matching method. The best set of MPMs had relatively smooth borders between visual areas and group average area sizes that matched the typical size in individual subjects. Comparisons between retinotopic areas and maps of estimated cortical myelin content revealed the following correspondences: (i) areas V1, V2, and V3 are heavily myelinated; (ii) the MT cluster is heavily myelinated, with a peak near the MT/pMSTv border; (iii) a dorsal myelin density peak corresponds to area V3D; (iv) the phPIT cluster is lightly myelinated; and (v) myelin density differs across the four areas of the V3A complex. Comparison of the retinotopic MPM with cytoarchitectonic areas, including those previously mapped to the fs_LR cortical surface atlas, revealed a correspondence between areas V1-3 and hOc1-3, respectively, but little correspondence beyond V3. These results indicate that architectonic and retinotopic areal boundaries are in agreement in some regions, and that retinotopy provides a finer-grained parcellation in other regions. The atlas datasets from this analysis are freely available as a resource for other studies that will benefit from retinotopic and myelin density map landmarks in human visual cortex.


Assuntos
Bainha de Mielina/fisiologia , Retina , Córtex Visual/fisiologia , Vias Visuais/fisiologia , Adulto , Mapeamento Encefálico , Bases de Dados Factuais , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Modelos Neurológicos
13.
J Pediatr ; 164(1): 52-60.e2, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24139564

RESUMO

OBJECTIVE: To evaluate associations between neonatal intensive care unit (NICU) room type (open ward and private room) and medical outcomes; neurobehavior, electrophysiology, and brain structure at hospital discharge; and developmental outcomes at 2 years of age. STUDY DESIGN: In this prospective longitudinal cohort study, we enrolled 136 preterm infants born <30 weeks gestation from an urban, 75-bed level III NICU from 2007-2010. Upon admission, each participant was assigned to a bedspace in an open ward or private room within the same hospital, based on space and staffing availability, where they remained for the duration of hospitalization. The primary outcome was developmental performance at 2 years of age (n = 86 infants returned for testing, which was 83% of survivors) measured using the Bayley Scales of Infant and Toddler Development, 3rd Edition. Secondary outcomes were: (1) medical factors throughout the hospitalization; (2) neurobehavior; and (3) cerebral injury and maturation (determined by magnetic resonance imaging and electroencephalography). RESULTS: At term equivalent age, infants in private rooms were characterized by a diminution of normal hemispheric asymmetry and a trend toward having lower amplitude integrated electroencephalography cerebral maturation scores (P = .02; ß = -0.52 [CI -0.95, -0.10]). At age 2 years, infants from private rooms had lower language scores (P = .006; ß = -8.3 [CI -14.2, -2.4]) and a trend toward lower motor scores (P = .02; ß = -6.3 [CI -11.7, -0.99]), which persisted after adjustment for potential confounders. CONCLUSION: These findings raise concerns that highlight the need for further research into the potential adverse effects of different amounts of sensory exposure in the NICU environment.


Assuntos
Encéfalo/patologia , Desenvolvimento Infantil , Deficiências do Desenvolvimento/diagnóstico , Comportamento do Lactente , Doenças do Prematuro/diagnóstico , Recém-Nascido Prematuro , Unidades de Terapia Intensiva Neonatal , Encéfalo/fisiopatologia , Deficiências do Desenvolvimento/fisiopatologia , Deficiências do Desenvolvimento/psicologia , Eletroencefalografia , Exposição Ambiental , Seguimentos , Humanos , Lactente , Recém-Nascido , Doenças do Prematuro/fisiopatologia , Doenças do Prematuro/psicologia , Recém-Nascido de muito Baixo Peso , Imageamento por Ressonância Magnética , Prognóstico , Estudos Prospectivos
14.
bioRxiv ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39131337

RESUMO

The human cerebral cortex contains groups of areas that support sensory, motor, cognitive, and affective functions, often categorized as functional networks. These areas show stronger internal and weaker external functional connectivity (FC) and exhibit similar FC profiles within rather than between networks. Previous studies have demonstrated the development of these networks from nascent forms present before birth to their mature, adult-like topography in childhood. However, analyses often still use definitions based on adult functional networks. We aim to assess how this might lead to the misidentification of functional networks and explore potential consequences and solutions. Our findings suggest that even though adult networks provide only a marginally better than-chance description of the infant FC organization, misidentification was largely driven by specific areas. By restricting functional networks to areas showing adult-like network clustering, we observed consistent within-network FC both within and across scans and throughout development. Additionally, these areas were spatially closer to locations with low variability in network identity among adults. Our analysis aids in understanding the potential consequences of using adult networks "as is" and provides guidance for future research on selecting and utilizing functional network models based on the research question and scenario.

15.
bioRxiv ; 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39314355

RESUMO

The cerebral cortex comprises discrete cortical areas that form during development. Accurate area parcellation in neuroimaging studies enhances statistical power and comparability across studies. The formation of cortical areas is influenced by intrinsic embryonic patterning as well as extrinsic inputs, particularly through postnatal exposure. Given the substantial changes in brain volume, microstructure, and functional connectivity during the first years of life, we hypothesized that cortical areas in 1-to-3-year-olds would exhibit major differences from those in neonates and progressively resemble adults as development progresses. Here, we parcellated the cerebral cortex into putative areas using local functional connectivity gradients in 92 toddlers at 2 years old. We demonstrated high reproducibility of these cortical regions across 1-to-3-year-olds in two independent datasets. The area boundaries in 1-to-3-year-olds were more similar to adults than neonates. While the age-specific group parcellation fitted better to the underlying functional connectivity in individuals during the first 3 years, adult area parcellations might still have some utility in developmental studies, especially in children older than 6 years. Additionally, we provided connectivity-based community assignments of the parcels, showing fragmented anterior and posterior components based on the strongest connectivity, yet alignment with adult systems when weaker connectivity was included.

16.
Brain Imaging Behav ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39083144

RESUMO

This systematic review examines the prevalence, underlying mechanisms, cohort characteristics, evaluation criteria, and cohort types in white matter hyperintensity (WMH) pipeline and implementation literature spanning the last two decades. Following Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines, we categorized WMH segmentation tools based on their methodologies from January 1, 2000, to November 18, 2022. Inclusion criteria involved articles using openly available techniques with detailed descriptions, focusing on WMH as a primary outcome. Our analysis identified 1007 visual rating scales, 118 pipeline development articles, and 509 implementation articles. These studies predominantly explored aging, dementia, psychiatric disorders, and small vessel disease, with aging and dementia being the most prevalent cohorts. Deep learning emerged as the most frequently developed segmentation technique, indicative of a heightened scrutiny in new technique development over the past two decades. We illustrate observed patterns and discrepancies between published and implemented WMH techniques. Despite increasingly sophisticated quantitative segmentation options, visual rating scales persist, with the SPM technique being the most utilized among quantitative methods and potentially serving as a reference standard for newer techniques. Our findings highlight the need for future standards in WMH segmentation, and we provide recommendations based on these observations.

17.
J Pediatr ; 163(5): 1507-10, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23988135

RESUMO

Infants with congenital heart disease have altered brain development. We characterized cortical folding, a critical part of brain development, in congenital heart disease infants and demonstrated an overall decrease in cortical surface area and cortical folding with regional alterations in the right lateral sulcus and left orbitofrontal region, cingulate region, and central sulcus. These abnormalities were present prior to surgery.


Assuntos
Córtex Cerebral/anormalidades , Cardiopatias Congênitas/fisiopatologia , Cardiopatias Congênitas/cirurgia , Mapeamento Encefálico , Feminino , Lobo Frontal/anormalidades , Giro do Cíngulo/anormalidades , Humanos , Processamento de Imagem Assistida por Computador , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino , Nascimento a Termo
18.
Cereb Cortex ; 22(10): 2227-40, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22052704

RESUMO

Surface-based atlases provide a valuable way to analyze and visualize the functional organization of cerebral cortex. Surface-based registration (SBR) is a primary method for aligning individual hemispheres to a surface-based atlas. We used landmark-constrained SBR to register many published parcellation schemes to the macaque F99 surface-based atlas. This enables objective comparison of both similarities and differences across parcellations. Cortical areas in the macaque vary in surface area by more than 2 orders of magnitude. Based on a composite parcellation derived from 3 major sources, the total number of macaque neocortical and transitional cortical areas is estimated to be about 130-140 in each hemisphere.


Assuntos
Córtex Cerebral/anatomia & histologia , Córtex Cerebral/fisiologia , Conectoma/métodos , Macaca mulatta/anatomia & histologia , Macaca mulatta/fisiologia , Modelos Anatômicos , Modelos Neurológicos , Animais
19.
Cereb Cortex ; 22(10): 2241-62, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22047963

RESUMO

We report on surface-based analyses that enhance our understanding of human cortical organization, including its convolutions and its parcellation into many distinct areas. The surface area of human neocortex averages 973 cm(2) per hemisphere, based on cortical midthickness surfaces of 2 cohorts of subjects. We implemented a method to register individual subjects to a hybrid version of the FreeSurfer "fsaverage" atlas whose left and right hemispheres are in precise geographic correspondence. Cortical folding patterns in the resultant population-average "fs_LR" midthickness surfaces are remarkably similar in the left and right hemispheres, even in regions showing significant asymmetry in 3D position. Both hemispheres are equal in average surface area, but hotspots of surface area asymmetry are present in the Sylvian Fissure and elsewhere, together with a broad pattern of asymmetries that are significant though small in magnitude. Multiple cortical parcellation schemes registered to the human atlas provide valuable reference data sets for comparisons with other studies. Identified cortical areas vary in size by more than 2 orders of magnitude. The total number of human neocortical areas is estimated to be ∼150 to 200 areas per hemisphere, which is modestly larger than a recent estimate for the macaque.


Assuntos
Córtex Cerebral/anatomia & histologia , Córtex Cerebral/fisiologia , Conectoma/métodos , Modelos Anatômicos , Modelos Neurológicos , Humanos
20.
Proc Natl Acad Sci U S A ; 107(29): 13135-40, 2010 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-20624964

RESUMO

The cerebral cortex of the human infant at term is complexly folded in a similar fashion to adult cortex but has only one third the total surface area. By comparing 12 healthy infants born at term with 12 healthy young adults, we demonstrate that postnatal cortical expansion is strikingly nonuniform: regions of lateral temporal, parietal, and frontal cortex expand nearly twice as much as other regions in the insular and medial occipital cortex. This differential postnatal expansion may reflect regional differences in the maturity of dendritic and synaptic architecture at birth and/or in the complexity of dendritic and synaptic architecture in adults. This expression may also be associated with differential sensitivity of cortical circuits to childhood experience and insults. By comparing human and macaque monkey cerebral cortex, we infer that the pattern of human evolutionary expansion is remarkably similar to the pattern of human postnatal expansion. To account for this correspondence, we hypothesize that it is beneficial for regions of recent evolutionary expansion to remain less mature at birth, perhaps to increase the influence of postnatal experience on the development of these regions or to focus prenatal resources on regions most important for early survival.


Assuntos
Evolução Biológica , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/crescimento & desenvolvimento , Desenvolvimento Humano , Adolescente , Adulto , Feminino , Humanos , Recém-Nascido , Imageamento por Ressonância Magnética , Masculino , Propriedades de Superfície , Nascimento a Termo , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA