Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Environ Sci (China) ; 144: 199-211, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38802231

RESUMO

As a strong oxidizing agent, ozone is used in some water treatment facilities for disinfection, taste and odor control, and removal of organic micropollutants. Phenylalanine (Phe) was used as the target amino acid to comprehensively investigate variability of disinfection byproducts (DBPs) formation during chlorine disinfection and residual chlorine conditions subsequent to ozonation. The results showed that subsequent to ozonation, the typical regulated and unregulated DBPs formation potential (DBPsFP), including trichloromethane (TCM), dichloroacetonitrile (DCAN), chloral hydrate (CH), dichloroacetic acid (DCAA), trichloroacetic acid (TCAA), and trichloroacetamide (TCAcAm) increased substantially, by 2.4, 3.3, 5.6, 1.2, 2.5, and 6.0 times, respectively, compared with only chlorination. Ozonation also significantly increased the DBPs yield under a 2 day simulated residual chlorine condition that mimicked the water distribution system. DBPs formations followed pseudo first order kinetics. The formation rates of DBPs in the first 6 hr were higher for TCM (0.214 hr-1), DCAN (0.244 hr-1), CH (0.105 hr-1), TCAcAm (0.234 hr-1), DCAA (0.375 hr-1) and TCAA (0.190 hr-1) than thereafter. The peak DBPsFP of TCM, DCAN, CH, TCAcAm, DCAA, and TCAA were obtained when that ozonation time was set at 5-15 min. Ozonation times > 30 min increased the mineralization of Phe and decreased the formation of DBPs upon chlorination. Increasing bromine ion (Br-) concentration increased production of bromine- DBPs and decreased chlorine-DBPs formation by 59.3%-92.2% . Higher ozone dosages and slight alkaline favored to reduce DBP formation and cytotoxicity. The ozonation conditions should be optimized for all application purposes including DBPs reduction.


Assuntos
Desinfecção , Halogenação , Ozônio , Fenilalanina , Poluentes Químicos da Água , Purificação da Água , Ozônio/química , Desinfecção/métodos , Purificação da Água/métodos , Poluentes Químicos da Água/química , Poluentes Químicos da Água/análise , Fenilalanina/química , Desinfetantes/química , Desinfetantes/análise , Cloro/química
2.
Indoor Air ; 32(11): e13129, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36437646

RESUMO

This systematic review investigates the emissions from ultrasonic humidifiers (e.g., cool mist humidifiers) within indoor air environments, namely soluble and insoluble metals and minerals as well as microorganisms and one organic chemical biocide. Relationships between ultrasonic humidifier fill water quality and the emissions in indoor air are studied, and associated potential adverse health outcomes are discussed. Literature from January 1, 1980, to February 1, 2022, was searched from online databases of PubMed, Web of Science, and Scopus to produce 27 articles. The results revealed clear positive proportional relationships of the concentration of microorganisms and soluble metals/minerals between fill water qualities and emitted airborne particles, for both microbial (n = 9) and inorganic (n = 15) constituents. When evaluating emissions and the consequent health outcomes, ventilation rates of specific exposure scenarios affect the concentrations of emitted particles. Thus, well-ventilated rooms may alleviate inhalation risks when the fill water in ultrasonic humidifiers contains microorganisms and soluble metals/minerals. Case reports (n = 3) possibly due to the inhalation of particles from ultrasonic humidifier include hypersensitivity pneumonitis in adults and a 6-month infant; the young infant exhibited nonreversible mild obstructive ventilator defect. In summary, related literature indicated correlation between fill water quality of ultrasonic humidifier and emitted particles in air quality, and inhalation of the emitted particles may cause undesirable health outcomes of impaired respiratory functions in adults and children.


Assuntos
Poluição do Ar em Ambientes Fechados , Umidificadores , Lactente , Criança , Humanos , Ultrassom , Aerossóis , Minerais
3.
Environ Sci Technol ; 55(24): 16770-16782, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34855387

RESUMO

A complex dataset with 140 sampling events was generated using triple quadrupole gas chromatography-mass spectrometer to track the occurrence of 95 odorants in raw and finished water from 98 drinking water treatment plants in 31 cities across China. Data analysis identified more than 70 odorants with concentrations ranging from not detected to thousands of ng/L. In raw water, Pearson correlation analysis determined that thioethers, non-oxygen benzene-containing compounds, and pyrazines were classes of chemicals that co-occurred, and geosmin and p(m)-cresol, as well as cyclohexanone and benzaldehyde, also co-occurred, indicating similar natural or industrial sources. Based on classification and regression tree analysis, total dissolved organic carbon and geographical location were identified as major factors affecting the occurrence of thioethers. Indoles, phenols, and thioethers were well-removed through conventional and advanced treatment processes, while some aldehydes could be generated. For other odorants, higher removal was achieved by ozonation-biological activated carbon (39.3%) compared to the conventional treatment process (14.5%). To our knowledge, this is the first study to systematically identify the major odorants in raw water and determine suitable treatment strategies to control their occurrence by applying data analytics and statistical methods to the complex dataset. These provide informative reference for odor control and water quality management in drinking water industry.


Assuntos
Água Potável , Poluentes Químicos da Água , Purificação da Água , Ciência de Dados , Matéria Orgânica Dissolvida , Odorantes/análise , Poluentes Químicos da Água/análise
4.
J Water Health ; 14(2): 223-35, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27105408

RESUMO

The United States Environmental Protection Agency mandates that community water systems (CWSs), or drinking water utilities, provide annual consumer confidence reports (CCRs) reporting on water quality, compliance with regulations, source water, and consumer education. While certain report formats are prescribed, there are no criteria ensuring that consumers understand messages in these reports. To assess clarity of message, trained raters evaluated a national sample of 30 CCRs using the Centers for Disease Control Clear Communication Index (Index) indices: (1) Main Message/Call to Action; (2) Language; (3) Information Design; (4) State of the Science; (5) Behavioral Recommendations; (6) Numbers; and (7) Risk. Communication materials are considered qualifying if they achieve a 90% Index score. Overall mean score across CCRs was 50 ± 14% and none scored 90% or higher. CCRs did not differ significantly by water system size. State of the Science (3 ± 15%) and Behavioral Recommendations (77 ± 36%) indices were the lowest and highest, respectively. Only 63% of CCRs explicitly stated if the water was safe to drink according to federal and state standards and regulations. None of the CCRs had passing Index scores, signaling that CWSs are not effectively communicating with their consumers; thus, the Index can serve as an evaluation tool for CCR effectiveness and a guide to improve water quality communications.


Assuntos
Água Potável , Disseminação de Informação/métodos , United States Environmental Protection Agency , Qualidade da Água , Centers for Disease Control and Prevention, U.S. , Compreensão , Estados Unidos
5.
J Dairy Sci ; 99(6): 4206-4219, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27060822

RESUMO

Water makes up more than 80% of the total weight of milk. However, the influence of water chemistry on the milk proteome has not been extensively studied. The objective was to evaluate interaction of water-sourced iron (low, medium, and high levels) on milk proteome and implications on milk oxidative state and mineral content. Protein composition, oxidative stability, and mineral composition of milk were investigated under conditions of iron ingestion through bovine drinking water (infused) as well as direct iron addition to commercial milk in 2 studies. Four ruminally cannulated cows each received aqueous infusions (based on water consumption of 100L) of 0, 2, 5, and 12.5mg/L Fe(2+) as ferrous lactate, resulting in doses of 0, 200, 500 or 1,250mg of Fe/d, in a 4×4Latin square design for a 14-d period. For comparison, ferrous sulfate solution was directly added into commercial retail milk at the same concentrations: control (0mg of Fe/L), low (2mg of Fe/L), medium (5mg of Fe/L), and high (12.5mg of Fe/L). Two-dimensional electrophoresis coupled with matrix-assisted laser desorption/ionization-tandem time-of-flight (MALDI-TOF/TOF) high-resolution tandem mass spectrometry analysis was applied to characterize milk protein composition. Oxidative stability of milk was evaluated by the thiobarbituric acid reactive substances (TBARS) assay for malondialdehyde, and mineral content was measured by inductively coupled plasma mass spectrometry. For milk from both abomasal infusion of ferrous lactate and direct addition of ferrous sulfate, an iron concentration as low as 2mg of Fe/L was able to cause oxidative stress in dairy cattle and infused milk, respectively. Abomasal infusion affected both caseins and whey proteins in the milk, whereas direct addition mainly influenced caseins. Although abomasal iron infusion did not significantly affect oxidation state and mineral balance (except iron), it induced oxidized off-flavor and partial degradation of whey proteins. Direct iron addition to milk led to lipid oxidation during storage at 4°C. Oxidation level was positively associated with the concentration of added iron. Minerals (Mg, P, Na, K, Ca, Zn) in milk were not affected by the added iron in milk. This study indicated that a small amount of iron contamination in bovine drinking water at the farm or incidental iron addition from potable water sources causes oxidation, affects milk protein composition and stability, and affects final milk quality.


Assuntos
Ferro , Proteínas do Leite , Abomaso/metabolismo , Animais , Bovinos , Água Potável , Feminino , Leite/química
6.
J Environ Qual ; 45(5): 1490-1500, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27695739

RESUMO

Chemical spills and accidents contaminate the environment and disrupt societies and economies around the globe. In the United States there were approximately 172,000 chemical spills that affected US waterbodies from 2004 to 2014. More than 8000 of these spills involved non-petroleum-related chemicals. Traditional emergency responses or incident command structures (ICSs) that respond to chemical spills require coordinated efforts by predominantly government personnel from multiple disciplines, including disaster management, public health, and environmental protection. However, the requirements of emergency response teams for science support might not be met within the traditional ICS. We describe the US ICS as an example of emergency-response approaches to chemical spills and provide examples in which external scientific support from research personnel benefitted the ICS emergency response, focusing primarily on nonpetroleum chemical spills. We then propose immediate, near-term, and long-term activities to support the response to chemical spills, focusing on nonpetroleum chemical spills. Further, we call for science support for spill prevention and near-term spill-incident response and identify longer-term research needs. The development of a formal mechanism for external science support of ICS from governmental and nongovernmental scientists would benefit rapid responders, advance incident- and crisis-response science, and aid society in coping with and recovering from chemical spills.


Assuntos
Acidentes , Poluentes Químicos da Água , Substâncias Perigosas , Estados Unidos
7.
Environ Sci Technol ; 49(2): 708-20, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25517292

RESUMO

Consumers assess their tap water primarily by its taste, odor, and appearance. Starting in 1979, USEPA promulgated Secondary Maximum Contaminant Levels (SMCLs) as guidance for contaminants with organoleptic effects and also to maintain consumers' confidence in tap water. This review assesses the basis for the 15 SMCLs (aluminum, chloride, color, copper, corrosivity, fluoride, foaming agents, iron, manganese, odor, pH, silver, sulfate, total dissolved solids, zinc) and summarizes advances in scientific knowledge since their promulgation. SMCLs for aluminum, color, pH, silver, sulfate, total dissolved solids, and zinc are appropriate at current values and remain consistent with sensory science literature. Recent advances in sensory and health sciences indicate that SMCLs for chloride, copper, fluoride, iron, and manganese are too high to minimize organoleptic effects. The SMCLs for corrosivity and foaming agents may be outdated. The SMCL for odor requires rethinking as the test does not correlate with consumer complaints. Since current stresses on source and treated waters include chemical spills, algal blooms, and increased salinization, organoleptic episodes that negatively impact consumer confidence and perception of tap water still occur and may increase. Thus, adherence to SMCLs can help maintain production of palatable water along with consumers' confidence in their water providers.


Assuntos
Água Potável/normas , Poluentes Químicos da Água/análise , Qualidade da Água , Abastecimento de Água/normas , Cor/normas , Água Potável/química , Humanos , Masculino , Odorantes/análise , Paladar , Estados Unidos , United States Environmental Protection Agency , Purificação da Água/normas
8.
Environ Sci Technol ; 49(3): 1319-27, 2015 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-25541902

RESUMO

Application of gas chromatography with mass spectrometric and human olfactory "sniffer" detectors reveals the nature of odorous chemicals from an industrial chemical spill. Crude 4-methylcyclohexane methanol (4-MCHM) spilled in a river and then contaminated drinking water and air for over 300000 consumers living in West Virginia. Olfactory gas chromatography allows investigators to independently measure the odor of chemical components in a mixture. Crude 4-MCHM is comprised of several major cyclohexane components, four of which have distinct isomer pairs. The cis- and trans-4-MCHM isomers are the only components to have distinct odors at the concentrations used in this study. The trans-4-MCHM is the dominant odorant with descriptors of "licorice" and "sweet". Trans-4-MCHM has an air odor threshold concentration of 0.060 ppb-v (95% CI: 0.040-0.091). The odor threshold concentrations are not influenced by gender or age but are lower by a factor of 5 for individuals with prior exposure compared to naïve subjects. Individual trans-4-MCHM odor threshold concentrations vary by more than a factor of 100. The cis-4-MCHM isomer has approximately a 2000-fold higher odor threshold concentration, different descriptors, and an even wider individual response range.


Assuntos
Poluentes Atmosféricos/análise , Cicloexanos/análise , Odorantes , Limiar Sensorial , Poluentes Químicos da Água/análise , Acidentes de Trabalho , Adulto , Poluição Ambiental , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Humanos , Isomerismo , Masculino , Pessoa de Meia-Idade , Percepção , Rios/química , Olfato , West Virginia , Adulto Jovem
9.
J Water Health ; 13(3): 645-53, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26322750

RESUMO

The United States Environmental Protection Agency mandates that community water systems (or water utilities) provide annual consumer confidence reports (CCRs)--water quality reports--to their consumers. These reports encapsulate information regarding sources of water, detected contaminants, regulatory compliance, and educational material. These reports have excellent potential for providing the public with accurate information on the safety of tap water, but there is a lack of research on the degree to which the information can be understood by a large proportion of the population. This study evaluated the readability of a nationally representative sample of 30 CCRs, released between 2011 and 2013. Readability (or 'comprehension difficulty') was evaluated using Flesch-Kincaid readability tests. The analysis revealed that CCRs were written at the 11th-14th grade level, which is well above the recommended 6th-7th grade level for public health communications. The CCR readability ease was found to be equivalent to that of the Harvard Law Review journal. These findings expose a wide chasm that exists between current water quality reports and their effectiveness toward being understandable to US residents. Suggestions for reorienting language and scientific information in CCRs to be easily comprehensible to the public are offered.


Assuntos
Informação de Saúde ao Consumidor/normas , Água Potável/normas , United States Environmental Protection Agency/legislação & jurisprudência , Qualidade da Água/normas , Compreensão , Humanos , Estados Unidos
10.
Clin Oral Investig ; 19(1): 127-37, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24595687

RESUMO

OBJECTIVES: The frequency and causes of chemosensory (taste and smell) disorders in cancer patients remain under-reported. This study examined the impact of cancer therapy on taste/smell functions and salivary constituents in brain tumor patients. MATERIALS AND METHODS: Twenty-two newly diagnosed patients with primary malignant gliomas underwent 6 weeks of combined modality treatment (CMD) with radiation and temozolomide followed by six monthly cycles of temozolomide. Chemosensory functions were assessed at 0, 3, 6, 10, 18, and 30 weeks with paired samples of saliva collected before and after an oral rinse with ferrous-spiked water. Iron (Fe)-induced oxidative stress was measured by salivary lipid oxidation (SLO); salivary proteins, electrolytes, and metals were determined. Parallel salivary analyses were performed on 22 healthy subjects. RESULTS: Chemosensory complaints of cancer patients increased significantly during treatment (p = 0.04) except at 30 weeks. Fe-induced SLO increased at 10 and 18 weeks. When compared with healthy subjects, SLO, total protein, Na, K, Cu, P, S, and Mg levels, as averaged across all times, were significantly higher (p < 0.05), whereas salivary Zn, Fe, and oral pH levels were significantly lower in cancer patients (p < 0.05). Neither time nor treatment had a significant impact on these salivary parameters in cancer patients. CONCLUSIONS: Impact of CMT treatment on chemosensory functions can range from minimal to moderate impairment. Analysis of SLO, metals, and total protein do not provide for reliable measures of chemosensory dysfunctions over time. CLINICAL RELEVANCE: Taste and smell functions are relevant in health and diseases; study of salivary constituents may provide clues on the causes of their dysfunctions.


Assuntos
Neoplasias Encefálicas/terapia , Glioma/terapia , Transtornos do Olfato/etiologia , Saliva/química , Distúrbios do Paladar/etiologia , Adulto , Idoso , Antineoplásicos Alquilantes/uso terapêutico , Estudos de Casos e Controles , Terapia Combinada , Dacarbazina/análogos & derivados , Dacarbazina/uso terapêutico , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estresse Oxidativo , Radioterapia , Proteínas e Peptídeos Salivares/análise , Temozolomida
11.
Water Sci Technol ; 69(1): 31-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24434965

RESUMO

The production and performance of activated carbon prepared from date pits was investigated. Date pits are an abundant local waste product in many countries; converting them to a commercial product would increase the sustainability of this fruit crop. The date pit activated carbon was shown to have similar characteristics of pore size and surface functional groups as other commercial carbons. Batch experiments were conducted with o- and p-nitrophenol to evaluate the performance of this carbon. Results were analyzed according to Langmuir, Freundlich, and Dubinin-Radushkevich adsorption isotherms. The adsorption capacity of o-nitrophenol was 142.9 mg/g while that of p-nitrophenol was 108.7 mg/g. The adsorption process was physical in nature. The position of the -NO(2) group in the benzene ring has a considerable effect on the adsorption capacity and rate of uptake. The kinetic results showed that a pseudo second-order model appropriately describes the experimental data. The analysis of kinetic data revealed that the mechanism of adsorption is complex with both liquid film diffusion and intraparticle diffusion contributing to adsorption of both adsorbates.


Assuntos
Carvão Vegetal/química , Nitrofenóis/química , Adsorção , Carbono/química
12.
Sci Total Environ ; 856(Pt 1): 158787, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36116655

RESUMO

The commonly used consumer product of an ultrasonic humidifier (e.g., cool mist humidifier) emits fine particles containing metals from tap water used to fill the humidifier. The objectives are: 1) predict emitted indoor air inhalable metal concentrations produced by an ultrasonic humidifier filled with tap-water containing As, Cd, Cr, Cu, Mn, and Pb in 33 m3 or 72 m3 rooms with varying air exchange rates; 2) calculate daily ingestion and 8-h inhalation average daily dose (ADD) and hazard quotient (HQ) for adults and children (aged 0.25-6 yr); and 3) quantify deposition in respiratory tract via multi-path particle dosimetry (MPPD) model. Mass concentrations of indoor air metals increase proportionally with aqueous metal concentrations in fill water, and are inversely related to ventilation. Inhalation-ADDs are 2 magnitudes lower than ingestion-ADDs, using identical water quality for ingestion and fill-water. However, in the 33 m3, low 0.2/h ventilated room, inhalation-HQs are >1 for children and adults, except for Pb. HQ inhalation risks exceed ingestion risks at drinking water regulated levels for As, Cd, Cr, and Mn. MPPD shows greater dose deposits in lungs of children than adults, and 3 times greater deposited doses in a 33 m3 vs 72 m3 room. Rethinking health effects of drinking water and consumer products to broaden consideration of multiple exposure routes is needed.


Assuntos
Poluição do Ar em Ambientes Fechados , Água Potável , Metais Pesados , Criança , Adulto , Humanos , Poluição do Ar em Ambientes Fechados/análise , Umidificadores , Qualidade da Água , Cádmio , Ultrassom , Chumbo , Medição de Risco , Monitoramento Ambiental , Metais Pesados/análise
13.
J Hazard Mater ; 449: 131052, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-36827722

RESUMO

Vitamin B12 (VB12) modified electrodes were prepared for the electrocatalytic reductive debromination of tribromoacetic acid (TBAA). Under galvanostatic conditions set as 5 mmol/L VB12 loading, 20 mmol/L Na2SO4 as electrolyte, 10.0 mA/cm2 current density, pH 3, and 298 K, the degradation efficiency of 200 µg/L TBAA at the VB12 modified electrode could reach 99.9 % after 6 h. The debromination of TBAA followed the first-order kinetic model. The masses of carbon and bromine elements were conserved before and after the reaction, together with the qualitative analysis of the degradation products showed the likely degradation pathways as TBAA→dibromoacetic acid (DBAA)→monobromoacetic acid (MBAA)→acetic acid (AA). ESR detection and quenching experiments confirmed the role of atomic H* in TBAA debromination. In-situ Raman spectroscopy showed that the Co-Br bond was strongly enriched to the electrode surface, accelerating the electron transfer. The H2O dissociation performance and transition states searching catalyzed by VB12 were calculated by Density Functional Theory (DFT) and proved that the composite electrode can effectively promote atomic H* generation. Material characterization and electrochemical performance tests showed that the VB12 modified electrode had excellent stability and atomic H* catalytic activity. The electrocatalytic debromination of TBAA at VB12 modified electrodes mainly involves two mechanisms, direct reduction by electron transfer and indirect reduction by the strongly reducing atom H*. The results provide an efficient way to achieve safe removal of brominated DBPs from drinking water after chlorination and before human consumption.

14.
Sci Total Environ ; 892: 164806, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37308013

RESUMO

Artificial sweeteners (ASs) are ubiquitously detected in the global water system, among which acesulfame (ACE) is an emerging contaminant for its chemical and biological stability and unsatisfying removal by conventional or advanced treatment technologies. Phytoremediation is an effective and sustainable in-situ remediation technology that this study is the first to explore ACE removal by aquatic plants. The emergent plants, Scirpus Validus (S. validus), Phyllostachys heteroclada Oliver (P. heteroclada) and Acorus tatarinowii (A. tatarinowii) showed superior removal capability than eleven floating plants, and demonstrated high phytoremediation efficiencies (PEs) of up to 75 % after 28 d domestication. ACE removal by the three emergent plants increased during domestication, as the PEs after 28 d domestication were 5.6-6.5 times of 7 d domestication. Notably, the half-life of ACE was decreased from 20.0 to 33.1 d to 1.1-3.4 d in the plant-hydroponic system, compared with 481.0-1152.4 d in control water without plants. Moreover, A. tatarinowii demonstrated the highest removal capacity for ACE with 0.37 mg/g fresh biomass weight (FW), higher than S. validus (0.27 mg/g FW) and P. heteroclada (0.20 mg/g FW). It is worth noting that a mass balance analysis demonstrated that plant transpiration and plant uptake account for about 6.72 %-18.54 % and 9.69 %-21.67 % ACE removal, while hydrolysis only accounted for about 4 % and photolysis was negligible. The rest ACE may be used as a carbon source by endophytic bacteria and root microorganisms of plants. In addition, increased temperature, pH, and illumination intensity had a significant effect on phytoremediation. In the selected experimental range, the increase of temperature from 15 °C to 35 °C, illumination intensity from 1500 lx to 6000 lx, and pH from 5 to 9 generally accelerated the PEs of ACE during the domestication process. Though the mechanism still requires further investigation, the results provide scientific and feasible data for removal of ACE from water by diverse plants for the first time, and also revealed insights for in-situ treatment of ACE.


Assuntos
Tiazinas , Poluentes Químicos da Água , Edulcorantes/análise , Biodegradação Ambiental , Hidroponia , Tiazinas/análise , Plantas , Poluentes Químicos da Água/análise
15.
Nutr J ; 11: 109, 2012 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-23237668

RESUMO

The subjective nature of self-reported dietary intake assessment methods presents numerous challenges to obtaining accurate dietary intake and nutritional status. This limitation can be overcome by the use of dietary biomarkers, which are able to objectively assess dietary consumption (or exposure) without the bias of self-reported dietary intake errors. The need for dietary biomarkers was addressed by the Institute of Medicine, who recognized the lack of nutritional biomarkers as a knowledge gap requiring future research. The purpose of this article is to review existing literature on currently available dietary biomarkers, including novel biomarkers of specific foods and dietary components, and assess the validity, reliability and sensitivity of the markers. This review revealed several biomarkers in need of additional validation research; research is also needed to produce sensitive, specific, cost-effective and noninvasive dietary biomarkers. The emerging field of metabolomics may help to advance the development of food/nutrient biomarkers, yet advances in food metabolome databases are needed. The availability of biomarkers that estimate intake of specific foods and dietary components could greatly enhance nutritional research targeting compliance to national recommendations as well as direct associations with disease outcomes. More research is necessary to refine existing biomarkers by accounting for confounding factors, to establish new indicators of specific food intake, and to develop techniques that are cost-effective, noninvasive, rapid and accurate measures of nutritional status.


Assuntos
Biomarcadores , Dieta/tendências , Cacau/química , Cafeína/administração & dosagem , Citrus/química , Carboidratos da Dieta/administração & dosagem , Gorduras na Dieta/administração & dosagem , Proteínas Alimentares/administração & dosagem , Grão Comestível/química , Alho/química , Metaboloma , Metabolômica , Avaliação Nutricional , Estado Nutricional , Azeite de Oliva , Óleos de Plantas/administração & dosagem , Óleos de Plantas/química , Vinho/análise
16.
Chemosphere ; 288(Pt 1): 132337, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34592214

RESUMO

Artificial sweeteners have raised emerging concern due to their potential threats to human health, which were frequently detected in aquatic environment with median concentrations. Although current researches have widely reported that ultraviolet light-activated persulfate process (UV/PS) was superior to UV/H2O2 process for the degradation of refractory organic contaminants, UV/H2O2 process presented a more satisfactory saccharin (SAC) removal efficiency than UV/PS process, completely degraded 20 mg/L SAC within 45 min. Hence, quenching and probe experiments were employed to investigate the difference between hydroxyl radical (OH)- and sulfate radical (SO4-)-mediated oxidation mechanisms, which revealed the higher reactivity of OH (1.37-1.56 × 109 M-1 s-1) toward SAC than SO4- (3.84-4.13 × 108 M-1 s-1). A combination of density functional theory calculation and transformation products identification disclosed that OH preferred to attack the benzene ring of SAC via hydrogen atom transfer pathway, whereas SO4- oxidation was conducive to the cleavage of -C-NH2 bond. Increasing oxidant concentration significantly accelerated SAC degradation in both processes, while UV/H2O2 process consumed lower electrical energy with respect to UV/PS process. Additionally, UV/H2O2 system presented excellent adaptability and stability under various water matrices parameters (e.g. pH, anions and humic acid). While both UV/H2O2 and UV/PS processes promoted the generation of disinfection by-products (DBPs) during subsequent chlorination, and prolonging pretreatment time posed positive effect on reducing the formation of DBPs. Overall, the results clearly demonstrate the high efficiency, economy and practicality of UV/H2O2 process in the remediation of SAC-contaminated water.


Assuntos
Poluentes Químicos da Água , Purificação da Água , Humanos , Peróxido de Hidrogênio , Cinética , Oxirredução , Sacarina , Raios Ultravioleta , Poluentes Químicos da Água/análise
17.
Sci Total Environ ; 833: 155001, 2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-35381256

RESUMO

Based on a one-year field investigation of disinfection by-products (DBPs) in large scale water distribution system (LSWDS), the various characteristics of DBPs together with their correlation with booster chlorination were elaborated through ArcGIS model. Furthermore, the effects of booster chlorination on DBP formation were investigated through simulated experiments. Residual chlorine showed a strong relationship with occurrence of different DBPs in LSWDS, and the yield of DBPs increased significantly after booster chlorination. The simulated chlorination experiments showed that diminution of the ratio of primary to secondary (booster) chlorination dosage, and delaying the secondary chlorine addition reduced the generation of DBPs during water conveyance. The yield concentrations of THMs and HAAs obviously increased after booster chlorination. The correlation between HAAs and chlorine dosage is weaker in the field research than in the simulation experiment while THMs had a positive correlation with the chlorine addition in both field research and simulation experiment.


Assuntos
Desinfetantes , Poluentes Químicos da Água , Purificação da Água , Cloretos , Cloro , Desinfetantes/análise , Desinfecção , Halogenação , Trialometanos/análise , Água , Poluentes Químicos da Água/análise , Abastecimento de Água
18.
J Hazard Mater ; 424(Pt C): 126918, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34775305

RESUMO

Natural organic matter (NOM) has rich halogenation reactive sites, therefore acts as the main precursor of disinfection byproducts (DBPs) in the chlorine disinfection process during drinking water treatment. In this research, high-quality metal-organic framework HKUST-1 is rapidly synthesized by a solvothermal method, and we are the first to report adsorption of aqueous humic acid (HA), representing NOM, and its adsorption behavior, influencing factors, and recycling capability. The crystalline HKUST-1 possessed a microporous framework with a high 1385 m2/g specific surface area, and three-dimensional structure as characterized by Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscope (SEM). 99% removal of 5 mg/L HA was observed at pH 5.8, room temperature, and 0.6 g/L HKUST-1. The maximum capacity was 14.42 mg HA/g HKUST-1 at room temperature. The Langmuir adsorption isotherm, quasi-second-order kinetic model, and thermodynamic parameters accurately describe the spontaneous and disorderly endothermic adsorption of HA by HKUST-1. The desorption regeneration process was accomplished by washing HKUST-1 with NaOH and calcination; it showed that HKUST-1 was viable in three regeneration cycles. The mechanism of HA adsorption by HKUST-1 is electrostatic and synergistic interaction between π-π bonding, and hydrogen bonding. HKUST-1 is a potential treatment strategy to remove NOM.


Assuntos
Estruturas Metalorgânicas , Poluentes Químicos da Água , Purificação da Água , Adsorção , Concentração de Íons de Hidrogênio , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier
19.
J Hazard Mater ; 423(Pt A): 127113, 2022 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-34523488

RESUMO

Distributions of halogenated disinfection byproducts (DBPs) in a two-source water distribution system (WDS) with enhanced chlorination were investigated. The WDS was divided into different sub-service areas based on different electrical conductivity of two water sources. Results clearly show that the principal halogenated DBPs were trihalomethanes (THMs) (5.06-82.69 µg/L), varying within the concentration range as 2-5 times as the levels of haloacetic acids (HAAs) (1.41-61.48 µg/L) and haloacetonitriles (HANs) (0.21-15.13 µg/L). Different water sources, treatment trains, and enhanced chlorination within the WDS had significant effects on seasonal and spatial variations of the DBP distributions over water conveyance. THM and HAA formation followed the sequence of summer > autumn > winter > spring. On the other hand, the DBP spatial distributions were visualized using the ArcGIS enabled Inverse distance weighting technique. The superposition of different DBP spatial distributions allowed for the identification of the high-risk THMs and HAAs areas based on the average values of THMs (27.49 µg/L) and HAAs (14.06 µg/L). Beyond the comprehensive analyses of DBP distribution in a municipal WDS, the project proposed and validated an innovative methodology to locate the DBP high-risk areas and to reveal the effects of different factors on DBPs distribution in a two-source WDS.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Cloro , Desinfetantes/análise , Desinfecção , Água Potável/análise , Halogenação , Trialometanos/análise , Poluentes Químicos da Água/análise
20.
Sci Total Environ ; 848: 157674, 2022 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-35926603

RESUMO

Disinfection byproducts (DBPs) are initially formed in the process of chlorination in the drinking water treatment plants (DWTPs), then further formed in the distribution system due to the presence of residual chlorine and reactive organic matters. However, in China, DBPs are monitored in the effluent from the DWTPs, but less is known about concentrations of DBPs in tap water since they are usually monitored once per half a year. The smart water service system is establishing real-time monitoring of water indices, although DBPs are an urgent need, they are difficult to monitor in real-time due to their diversity and complicated detection methods. If the correlation between DBP concentration and routinely real-time monitored water quality parameters (e.g., pH value, residual chlorine, ammonia) can be evaluated, the concentration of DBPs can be predicted, which will strengthen the control of tap water safety. This article comprehensively assessed the physicochemical parameters and the occurrence of DBP formation in the tap water with an 18-month investigation in Z city (China). DBP formation in tap water of different seasons and different water sources were compared. Based on the relationship between DBPs and physicochemical parameters, linear prediction and nonlinear prediction models of trihalomethanes (THMs), haloacetonitriles (HANs) and haloacetic acids (HAAs) were established, and the accuracy of these models was verified by measured data. Finally, the toxicity and carcinogenic and non-carcinogenic health risk assessment of DBPs in tap water were analyzed.


Assuntos
Desinfetantes , Água Potável , Poluentes Químicos da Água , Purificação da Água , Amônia , China , Cloro , Desinfetantes/análise , Desinfecção/métodos , Halogenação , Humanos , Trialometanos/análise , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA