Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 21(1)2020 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-33374744

RESUMO

Hand exoskeleton potential applications reach further than grasping or assistance during manipulation. In this paper, we present a preliminary study of how this technology can be applied in order to improve performance during standing to help the user to keep balance under perturbations. Non-impaired users wearing a hand exoskeleton gripping a hand rail were pushed by a cable-driven robot, so that their standing equilibrium was perturbed. The center of pressure, surface electromyography, and interaction force data were recorded in order to assess the performance of users and their postural strategy. The results showed that users could keep their balance with the same outcomes using their bare hands and the hand exoskeleton. However, when wearing the exoskeleton, a higher muscular activity was registered in hand flexor muscles. This is also supported by the grasping force, which shows that users stretched their hand more than expected when wearing the hand exoskeleton. This paper concludes that it is possible that the lack of tactile feedback could lead to over compensation in the grasping. Therefore, the next studies will aim to check whether this effect can be reversed by training users to wear the exoskeleton.


Assuntos
Exoesqueleto Energizado , Adulto , Eletromiografia , Mãos , Força da Mão , Humanos , Músculo Esquelético
2.
Sensors (Basel) ; 19(22)2019 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-31726745

RESUMO

When combined with assistive robotic devices, such as wearable robotics, brain/neural-computer interfaces (BNCI) have the potential to restore the capabilities of handicapped people to carry out activities of daily living. To improve applicability of such systems, workload and stress should be reduced to a minimal level. Here, we investigated the user's physiological reactions during the exhaustive use of the interfaces of a hybrid control interface. Eleven BNCI-naive healthy volunteers participated in the experiments. All participants sat in a comfortable chair in front of a desk and wore a whole-arm exoskeleton as well as wearable devices for monitoring physiological, electroencephalographic (EEG) and electrooculographic (EoG) signals. The experimental protocol consisted of three phases: (i) Set-up, calibration and BNCI training; (ii) Familiarization phase; and (iii) Experimental phase during which each subject had to perform EEG and EoG tasks. After completing each task, the NASA-TLX questionnaire and self-assessment manikin (SAM) were completed by the user. We found significant differences (p-value < 0.05) in heart rate variability (HRV) and skin conductance level (SCL) between participants during the use of the two different biosignal modalities (EEG, EoG) of the BNCI. This indicates that EEG control is associated with a higher level of stress (associated with a decrease in HRV) and mental work load (associated with a higher level of SCL) when compared to EoG control. In addition, HRV and SCL modulations correlated with the subject's workload perception and emotional responses assessed through NASA-TLX questionnaires and SAM.

3.
Sensors (Basel) ; 18(2)2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29414861

RESUMO

This paper presents the development of an optical force sensor architecture directed to prototyping and cost-effective applications, where the actual force requirements are still not well defined or the most suitable commercial technologies would highly increase the cost of the device. The working principle of this sensor consists of determining the displacement of a lens by measuring the distortion of a refracted light beam. This lens is attached to an elastic interface whose elastic constant is known, allowing the estimation of the force that disturbs the optical system. In order to satisfy the requirements of the design process in an inexpensive way, this sensor can be built by fast prototyping technologies and using non-optical grade elements. To deal with the imperfections of this kind of manufacturing procedures and materials, four fitting models are proposed to calibrate the implemented sensor. In order to validate the system, two different sensor implementations with measurement ranges of ±45 N and ±10 N are tested with the proposed models, comparing the resulting force estimation with respect to an industrial-grade load cell. Results show that all models can estimate the loads with an error of about 6% of the measurement range.

4.
Sensors (Basel) ; 15(12): 30571-83, 2015 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-26690160

RESUMO

This paper presents a novel kinematic reconstruction of the human arm chain with five degrees of freedom and the estimation of the shoulder location during rehabilitation therapy assisted by end-effector robotic devices. This algorithm is based on the pseudoinverse of the Jacobian through the acceleration of the upper arm, measured using an accelerometer, and the orientation of the shoulder, estimated with a magnetic angular rate and gravity (MARG) device. The results show a high accuracy in terms of arm joints and shoulder movement with respect to the real arm measured through an optoelectronic system. Furthermore, the range of motion (ROM) of 50 healthy subjects is studied from two different trials, one trying to avoid shoulder movements and the second one forcing them. Moreover, the shoulder movement in the second trial is also estimated accurately. Besides the fact that the posture of the patient can be corrected during the exercise, the therapist could use the presented algorithm as an objective assessment tool. In conclusion, the joints' estimation enables a better adjustment of the therapy, taking into account the needs of the patient, and consequently, the arm motion improves faster.


Assuntos
Articulações/fisiologia , Reabilitação/instrumentação , Robótica/instrumentação , Extremidade Superior/fisiologia , Tecnologia sem Fio/instrumentação , Acelerometria , Algoritmos , Fenômenos Biomecânicos , Humanos , Sistemas Homem-Máquina , Reabilitação/métodos , Robótica/métodos
5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 433-436, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31945931

RESUMO

This study aims to explore the relationship between the stress level and the exercise intensity performing a rehabilitation task, aided by an upper limb rehabilitation robot, in a game in single-player mode and competitive mode. The stress level has been estimated by means of the Galvanic Skin Response(GSR). The results prove that to employ a social game mode like the competitive one, makes possible to increase the intensity level increasing the stress level to a lesser extent than in single-player modes.


Assuntos
Braço , Terapia por Exercício , Humanos , Medicina , Reabilitação do Acidente Vascular Cerebral , Extremidade Superior , Jogos de Vídeo
6.
Front Aging Neurosci ; 8: 205, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27616992

RESUMO

Post-stroke neurorehabilitation based on virtual therapies are performed completing repetitive exercises shown in visual electronic devices, whose content represents imaginary or daily life tasks. Currently, there are two ways of visualization of these task. 3D virtual environments are used to get a three dimensional space that represents the real world with a high level of detail, whose realism is determinated by the resolucion and fidelity of the objects of the task. Furthermore, 2D virtual environments are used to represent the tasks with a low degree of realism using techniques of bidimensional graphics. However, the type of visualization can influence the quality of perception of the task, affecting the patient's sensorimotor performance. The purpose of this paper was to evaluate if there were differences in patterns of kinematic movements when post-stroke patients performed a reach task viewing a virtual therapeutic game with two different type of visualization of virtual environment: 2D and 3D. Nine post-stroke patients have participated in the study receiving a virtual therapy assisted by PUPArm rehabilitation robot. Horizontal movements of the upper limb were performed to complete the aim of the tasks, which consist in reaching peripheral or perspective targets depending on the virtual environment shown. Various parameter types such as the maximum speed, reaction time, path length, or initial movement are analyzed from the data acquired objectively by the robotic device to evaluate the influence of the task visualization. At the end of the study, a usability survey was provided to each patient to analysis his/her satisfaction level. For all patients, the movement trajectories were enhanced when they completed the therapy. This fact suggests that patient's motor recovery was increased. Despite of the similarity in majority of the kinematic parameters, differences in reaction time and path length were higher using the 3D task. Regarding the success rates were very similar. In conclusion, the using of 2D environments in virtual therapy may be a more appropriate and comfortable way to perform tasks for upper limb rehabilitation of post-stroke patients, in terms of accuracy in order to effectuate optimal kinematic trajectories.

7.
Annu Int Conf IEEE Eng Med Biol Soc ; 2015: 1190-3, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26736479

RESUMO

This paper presents a kinematic reconstruction algorithm for the variables of the human arm joints in robot-aided neurorehabilitation therapies. The presented algorithm uses the end effector of a rehabilitation robot and an accelerometer placed onto the upper arm to compute accurate values of the human arm chain. The goal of this algorithm is to obtain the joint values of the patient's arm to provide objective information to the therapist about the progress of the patient and to study the effectiveness of these kind of therapies.


Assuntos
Braço , Algoritmos , Fenômenos Biomecânicos , Humanos , Articulações , Robótica , Reabilitação do Acidente Vascular Cerebral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA