Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 602(7896): 307-313, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34937050

RESUMO

Emerging variants of concern (VOCs) are driving the COVID-19 pandemic1,2. Experimental assessments of replication and transmission of major VOCs and progenitors are needed to understand the mechanisms of replication and transmission of VOCs3. Here we show that the spike protein (S) from Alpha (also known as B.1.1.7) and Beta (B.1.351) VOCs had a greater affinity towards the human angiotensin-converting enzyme 2 (ACE2) receptor than that of the progenitor variant S(D614G) in vitro. Progenitor variant virus expressing S(D614G) (wt-S614G) and the Alpha variant showed similar replication kinetics in human nasal airway epithelial cultures, whereas the Beta variant was outcompeted by both. In vivo, competition experiments showed a clear fitness advantage of Alpha over wt-S614G in ferrets and two mouse models-the substitutions in S were major drivers of the fitness advantage. In hamsters, which support high viral replication levels, Alpha and wt-S614G showed similar fitness. By contrast, Beta was outcompeted by Alpha and wt-S614G in hamsters and in mice expressing human ACE2. Our study highlights the importance of using multiple models to characterize fitness of VOCs and demonstrates that Alpha is adapted for replication in the upper respiratory tract and shows enhanced transmission in vivo in restrictive models, whereas Beta does not overcome Alpha or wt-S614G in naive animals.


Assuntos
COVID-19/transmissão , COVID-19/virologia , Mutação , SARS-CoV-2/classificação , SARS-CoV-2/fisiologia , Replicação Viral , Substituição de Aminoácidos , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Animais de Laboratório/virologia , COVID-19/veterinária , Cricetinae , Modelos Animais de Doenças , Células Epiteliais/virologia , Feminino , Furões/virologia , Humanos , Masculino , Mesocricetus/virologia , Camundongos , Camundongos Transgênicos , SARS-CoV-2/genética , SARS-CoV-2/crescimento & desenvolvimento , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/metabolismo , Virulência/genética
2.
Nature ; 592(7852): 122-127, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33636719

RESUMO

During the evolution of SARS-CoV-2 in humans, a D614G substitution in the spike glycoprotein (S) has emerged; virus containing this substitution has become the predominant circulating variant in the COVID-19 pandemic1. However, whether the increasing prevalence of this variant reflects a fitness advantage that improves replication and/or transmission in humans or is merely due to founder effects remains unknown. Here we use isogenic SARS-CoV-2 variants to demonstrate that the variant that contains S(D614G) has enhanced binding to the human cell-surface receptor angiotensin-converting enzyme 2 (ACE2), increased replication in primary human bronchial and nasal airway epithelial cultures as well as in a human ACE2 knock-in mouse model, and markedly increased replication and transmissibility in hamster and ferret models of SARS-CoV-2 infection. Our data show that the D614G substitution in S results in subtle increases in binding and replication in vitro, and provides a real competitive advantage in vivo-particularly during the transmission bottleneck. Our data therefore provide an explanation for the global predominance of the variant that contains S(D614G) among the SARS-CoV-2 viruses that are currently circulating.


Assuntos
COVID-19/transmissão , COVID-19/virologia , Mutação , SARS-CoV-2/genética , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/genética , Replicação Viral/genética , Enzima de Conversão de Angiotensina 2/genética , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Brônquios/citologia , Brônquios/virologia , COVID-19/epidemiologia , Linhagem Celular , Células Cultivadas , Cricetinae , Modelos Animais de Doenças , Células Epiteliais/virologia , Feminino , Furões/virologia , Efeito Fundador , Técnicas de Introdução de Genes , Aptidão Genética , Humanos , Masculino , Mesocricetus , Camundongos , Mucosa Nasal/citologia , Mucosa Nasal/virologia , Ligação Proteica , RNA Viral/análise , Receptores de Coronavírus/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/patogenicidade
3.
Nature ; 582(7813): 561-565, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32365353

RESUMO

Reverse genetics has been an indispensable tool to gain insights into viral pathogenesis and vaccine development. The genomes of large RNA viruses, such as those from coronaviruses, are cumbersome to clone and manipulate in Escherichia coli owing to the size and occasional instability of the genome1-3. Therefore, an alternative rapid and robust reverse-genetics platform for RNA viruses would benefit the research community. Here we show the full functionality of a yeast-based synthetic genomics platform to genetically reconstruct diverse RNA viruses, including members of the Coronaviridae, Flaviviridae and Pneumoviridae families. Viral subgenomic fragments were generated using viral isolates, cloned viral DNA, clinical samples or synthetic DNA, and these fragments were then reassembled in one step in Saccharomyces cerevisiae using transformation-associated recombination cloning to maintain the genome as a yeast artificial chromosome. T7 RNA polymerase was then used to generate infectious RNA to rescue viable virus. Using this platform, we were able to engineer and generate chemically synthesized clones of the virus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)4, which has caused the recent pandemic of coronavirus disease (COVID-19), in only a week after receipt of the synthetic DNA fragments. The technical advance that we describe here facilitates rapid responses to emerging viruses as it enables the real-time generation and functional characterization of evolving RNA virus variants during an outbreak.


Assuntos
Betacoronavirus/genética , Clonagem Molecular/métodos , Infecções por Coronavirus/virologia , Genoma Viral/genética , Genômica/métodos , Pneumonia Viral/virologia , Genética Reversa/métodos , Biologia Sintética/métodos , Animais , COVID-19 , China/epidemiologia , Chlorocebus aethiops , Cromossomos Artificiais de Levedura/metabolismo , Infecções por Coronavirus/epidemiologia , RNA Polimerases Dirigidas por DNA/metabolismo , Evolução Molecular , Humanos , Mutação , Pandemias/estatística & dados numéricos , Pneumonia Viral/epidemiologia , Vírus Sinciciais Respiratórios/genética , SARS-CoV-2 , Saccharomyces cerevisiae/genética , Células Vero , Proteínas Virais/metabolismo , Zika virus/genética
4.
PLoS Pathog ; 19(5): e1011402, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37220143

RESUMO

Parvovirus B19 (B19V) is transmitted primarily via the respiratory route, however, the mechanism involved remains unknown. B19V targets a restricted receptor expressed in erythroid progenitor cells in the bone marrow. However, B19V shifts the receptor under acidic conditions and targets the widely expressed globoside. The pH-dependent interaction with globoside may allow virus entry through the naturally acidic nasal mucosa. To test this hypothesis, MDCK II cells and well-differentiated human airway epithelial cell (hAEC) cultures were grown on porous membranes and used as models to study the interaction of B19V with the epithelial barrier. Globoside expression was detected in polarized MDCK II cells and the ciliated cell population of well-differentiated hAEC cultures. Under the acidic conditions of the nasal mucosa, virus attachment and transcytosis occurred without productive infection. Neither virus attachment nor transcytosis was observed under neutral pH conditions or in globoside knockout cells, demonstrating the concerted role of globoside and acidic pH in the transcellular transport of B19V. Globoside-dependent virus uptake involved VP2 and occurred by a clathrin-independent pathway that is cholesterol and dynamin-dependent. This study provides mechanistic insight into the transmission of B19V through the respiratory route and reveals novel vulnerability factors of the epithelial barrier to viruses.


Assuntos
Parvovirus B19 Humano , Animais , Cães , Humanos , Globosídeos/metabolismo , Linhagem Celular , Mucosa/metabolismo , Células Madin Darby de Rim Canino
5.
PLoS Biol ; 19(12): e3001490, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34962926

RESUMO

Over the past 20 years, 3 highly pathogenic human coronaviruses (HCoVs) have emerged-Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV), Middle East Respiratory Syndrome Coronavirus (MERS-CoV), and, most recently, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)-demonstrating that coronaviruses (CoVs) pose a serious threat to human health and highlighting the importance of developing effective therapies against them. Similar to other viruses, CoVs are dependent on host factors for their survival and replication. We hypothesized that evolutionarily distinct CoVs may exploit similar host factors and pathways to support their replication cycles. Herein, we conducted 2 independent genome-wide CRISPR/Cas-9 knockout (KO) screens to identify MERS-CoV and HCoV-229E host dependency factors (HDFs) required for HCoV replication in the human Huh7 cell line. Top scoring genes were further validated and assessed in the context of MERS-CoV and HCoV-229E infection as well as SARS-CoV and SARS-CoV-2 infection. Strikingly, we found that several autophagy-related genes, including TMEM41B, MINAR1, and the immunophilin FKBP8, were common host factors required for pan-CoV replication. Importantly, inhibition of the immunophilin protein family with the compounds cyclosporine A, and the nonimmunosuppressive derivative alisporivir, resulted in dose-dependent inhibition of CoV replication in primary human nasal epithelial cell cultures, which recapitulate the natural site of virus replication. Overall, we identified host factors that are crucial for CoV replication and demonstrated that these factors constitute potential targets for therapeutic intervention by clinically approved drugs.


Assuntos
Autofagia/genética , Sistemas CRISPR-Cas , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , SARS-CoV-2/genética , Antivirais/farmacologia , Técnicas de Silenciamento de Genes , Interações Hospedeiro-Patógeno , Humanos , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Replicação Viral
6.
PLoS Biol ; 19(3): e3001158, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33780434

RESUMO

Since its emergence in December 2019, Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has spread globally and become a major public health burden. Despite its close phylogenetic relationship to SARS-CoV, SARS-CoV-2 exhibits increased human-to-human transmission dynamics, likely due to efficient early replication in the upper respiratory epithelium of infected individuals. Since different temperatures encountered in the human upper and lower respiratory tract (33°C and 37°C, respectively) have been shown to affect the replication kinetics of several respiratory viruses, as well as host innate immune response dynamics, we investigated the impact of temperature on SARS-CoV-2 and SARS-CoV infection using the primary human airway epithelial cell culture model. SARS-CoV-2, in contrast to SARS-CoV, replicated to higher titers when infections were performed at 33°C rather than 37°C. Although both viruses were highly sensitive to type I and type III interferon pretreatment, a detailed time-resolved transcriptome analysis revealed temperature-dependent interferon and pro-inflammatory responses induced by SARS-CoV-2 that were inversely proportional to its replication efficiency at 33°C or 37°C. These data provide crucial insight on pivotal virus-host interaction dynamics and are in line with characteristic clinical features of SARS-CoV-2 and SARS-CoV, as well as their respective transmission efficiencies.


Assuntos
Perfilação da Expressão Gênica/métodos , Regulação Viral da Expressão Gênica/genética , SARS-CoV-2/genética , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Animais , Antivirais/farmacologia , Células Cultivadas , Chlorocebus aethiops , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Regulação Viral da Expressão Gênica/efeitos dos fármacos , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/genética , Humanos , Interferons/farmacologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/fisiologia , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/fisiologia , Especificidade da Espécie , Temperatura , Células Vero , Replicação Viral/efeitos dos fármacos , Replicação Viral/genética
7.
J Virol ; 96(11): e0036422, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35588276

RESUMO

Effective broad-spectrum antivirals are critical to prevent and control emerging human coronavirus (hCoV) infections. Despite considerable progress made toward identifying and evaluating several synthetic broad-spectrum antivirals against hCoV infections, a narrow therapeutic window has limited their success. Enhancing the endogenous interferon (IFN) and IFN-stimulated gene (ISG) response is another antiviral strategy that has been known for decades. However, the side effects of pegylated type-I IFNs (IFN-Is) and the proinflammatory response detected after delayed IFN-I therapy have discouraged their clinical use. In contrast to IFN-Is, IFN-λ, a dominant IFN at the epithelial surface, has been shown to be less proinflammatory. Consequently, we evaluated the prophylactic and therapeutic efficacy of IFN-λ in hCoV-infected airway epithelial cells and mice. Human primary airway epithelial cells treated with a single dose of IFN-I (IFN-α) and IFN-λ showed similar ISG expression, whereas cells treated with two doses of IFN-λ expressed elevated levels of ISG compared to that of IFN-α-treated cells. Similarly, mice treated with two doses of IFN-λ were better protected than mice that received a single dose, and a combination of prophylactic and delayed therapeutic regimens completely protected mice from a lethal Middle East respiratory syndrome CoV (MERS-CoV) infection. A two-dose IFN-λ regimen significantly reduced lung viral titers and inflammatory cytokine levels with marked improvement in lung inflammation. Collectively, we identified an effective regimen for IFN-λ use and demonstrated the protective efficacy of IFN-λ in MERS-CoV-infected mice. IMPORTANCE Effective antiviral agents are urgently required to prevent and treat individuals infected with SARS-CoV-2 and other emerging viral infections. The COVID-19 pandemic has catapulted our efforts to identify, develop, and evaluate several antiviral agents. However, a narrow therapeutic window has limited the protective efficacy of several broad-spectrum and CoV-specific antivirals. IFN-λ is an antiviral agent of interest due to its ability to induce a robust endogenous antiviral state and low levels of inflammation. Here, we evaluated the protective efficacy and effective treatment regimen of IFN-λ in mice infected with a lethal dose of MERS-CoV. We show that while prophylactic and early therapeutic IFN-λ administration is protective, delayed treatment is detrimental. Notably, a combination of prophylactic and delayed therapeutic administration of IFN-λ protected mice from severe MERS. Our results highlight the prophylactic and therapeutic use of IFN-λ against lethal hCoV and likely other viral lung infections.


Assuntos
Antivirais , Infecções por Coronavirus , Interferons , Coronavírus da Síndrome Respiratória do Oriente Médio , Animais , Antivirais/farmacologia , Infecções por Coronavirus/tratamento farmacológico , Infecções por Coronavirus/imunologia , Humanos , Interferons/farmacologia , Camundongos , Interferon lambda
8.
Emerg Infect Dis ; 27(7): 1811-1820, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34152956

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has spread globally, and the number of worldwide cases continues to rise. The zoonotic origins of SARS-CoV-2 and its intermediate and potential spillback host reservoirs, besides humans, remain largely unknown. Because of ethical and experimental constraints and more important, to reduce and refine animal experimentation, we used our repository of well-differentiated airway epithelial cell (AEC) cultures from various domesticated and wildlife animal species to assess their susceptibility to SARS-CoV-2. We observed that SARS-CoV-2 replicated efficiently only in monkey and cat AEC culture models. Whole-genome sequencing of progeny viruses revealed no obvious signs of nucleotide transitions required for SARS-CoV-2 to productively infect monkey and cat AEC cultures. Our findings, together with previous reports of human-to-animal spillover events, warrant close surveillance to determine the potential role of cats, monkeys, and closely related species as spillback reservoirs for SARS-CoV-2.


Assuntos
Animais Selvagens , COVID-19 , Animais , Células Epiteliais , Humanos , Sistema Respiratório , SARS-CoV-2
9.
J Virol ; 94(5)2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-31776283

RESUMO

Interferon lambda 4 (IFN-λ4) is a recently identified enigmatic member of the interferon (IFN) lambda family. Genetic data suggest that the IFNL4 gene acts in a proviral and anti-inflammatory manner in patients. However, the protein is indistinguishable in vitro from the other members of the interferon lambda family. We have investigated the gene regulation of IFNL4 in detail and found that it differs radically from that of canonical antiviral interferons. Being induced by viral infection is a defining characteristic of interferons, but viral infection or overexpression of members of the interferon regulatory factor (IRF) family of transcription factors only leads to a minute induction of IFNL4 This behavior is evolutionarily conserved and can be reversed by inserting a functional IRF3 binding site into the IFNL4 promoter. Thus, the regulation of the IFNL4 gene is radically different and might explain some of the atypical phenotypes associated with the IFNL4 gene in humans.IMPORTANCE Recent genetic evidence has highlighted how the IFNL4 gene acts in a counterintuitive manner, as patients with a nonfunctional IFNL4 gene exhibit increased clearance of hepatitis C virus (HCV) but also increased liver inflammation. This suggests that the IFNL4 gene acts in a proviral and anti-inflammatory manner. These surprising but quite clear genetic data have prompted an extensive examination of the basic characteristics of the IFNL4 gene and its gene product, interferon lambda 4 (IFN-λ4). We have investigated the expression of the IFNL4 gene and found it to be poorly induced by viral infections. A thorough investigation of the IFNL4 promoter revealed a highly conserved and functional promoter, but also one that lacks the defining characteristic of interferons (IFNs), i.e., the ability to be effectively induced by viral infections. We suggest that the unique function of the IFNL4 gene is related to its noncanonical transcriptional regulation.


Assuntos
Evolução Molecular , Interferons/genética , Interferons/metabolismo , Células A549 , Animais , Antivirais/farmacologia , Sequência de Bases , Regulação da Expressão Gênica , Células HEK293 , Células Hep G2 , Hepacivirus/fisiologia , Hepatite C/metabolismo , Humanos , Inflamação , Interferons/classificação , Interleucinas/classificação , Interleucinas/genética , Interleucinas/farmacologia , Fígado/patologia , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Células THP-1
10.
Emerg Infect Dis ; 26(7): 1592-1595, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32284092

RESUMO

Infection control instructions call for use of alcohol-based hand rub solutions to inactivate severe acute respiratory syndrome coronavirus 2. We determined the virucidal activity of World Health Organization-recommended hand rub formulations, at full strength and multiple dilutions, and of the active ingredients. All disinfectants demonstrated efficient virus inactivation.


Assuntos
Álcoois/farmacologia , Betacoronavirus/efeitos dos fármacos , Infecções por Coronavirus/prevenção & controle , Desinfetantes/farmacologia , Desinfecção das Mãos/métodos , Pandemias/prevenção & controle , Pneumonia Viral/prevenção & controle , Inativação de Vírus , COVID-19 , Humanos , SARS-CoV-2 , Organização Mundial da Saúde
11.
J Gen Virol ; 101(6): 587-598, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32416749

RESUMO

Seasonal influenza viruses circulating between 1918 and 2009 harboured two prevalent genetic variations in the NS1 coding region. A glutamic acid (E)-to-lysine (K) exchange at position 196 was reported to diminish the capacity of NS1 to control interferon induction. Furthermore, alterations at position 231 determine a carboxy-terminal extension of seven amino acids from 230 to 237 residues. Sequence analyses of NS1 of the last 90 years suggest that variations at these two positions are functionally linked. To determine the impact of the two positions on viral replication in vivo, we used a mouse-adapted variant of A/Hong Kong/01/68 (maHK68) (H3N2). maHK68 encodes an NS1 of 237 amino acids with lysine at position 196. A panel of recombinant maHK68 viruses was generated encoding NS1 variants that differed at positions 196 and 231. Our analyses showed a clear effect of the K-196-to-E exchange on interferon induction and virus virulence. These effects were further modulated by the loss of the seven-amino-acid extension. We propose that the combination of NS1 E-196 with the short C-terminal variant conferred a fitness advantage that is reflected by increased virulence in vivo. Notably, this particular NS1 constellation was observed for the pandemic 1918 H1N1 virus.


Assuntos
Códon/genética , Proteínas não Estruturais Virais/genética , Virulência/genética , Replicação Viral/genética , Células A549 , Aminoácidos/genética , Animais , Linhagem Celular , Linhagem Celular Tumoral , Cães , Evolução Molecular , Células HEK293 , Interações Hospedeiro-Patógeno/genética , Humanos , Influenza Humana/virologia , Células Madin Darby de Rim Canino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Infecções por Orthomyxoviridae/virologia
12.
PLoS Pathog ; 14(9): e1007296, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-30248143

RESUMO

SARS-coronavirus (CoV) is a zoonotic agent derived from rhinolophid bats, in which a plethora of SARS-related, conspecific viral lineages exist. Whereas the variability of virulence among reservoir-borne viruses is unknown, it is generally assumed that the emergence of epidemic viruses from animal reservoirs requires human adaptation. To understand the influence of a viral factor in relation to interspecies spillover, we studied the papain-like protease (PLP) of SARS-CoV. This key enzyme drives the early stages of infection as it cleaves the viral polyprotein, deubiquitinates viral and cellular proteins, and antagonizes the interferon (IFN) response. We identified a bat SARS-CoV PLP, which shared 86% amino acid identity with SARS-CoV PLP, and used reverse genetics to insert it into the SARS-CoV genome. The resulting virus replicated like SARS-CoV in Vero cells but was suppressed in IFN competent MA-104 (3.7-fold), Calu-3 (2.6-fold) and human airway epithelial cells (10.3-fold). Using ectopically-expressed PLP variants as well as full SARS-CoV infectious clones chimerized for PLP, we found that a protease-independent, anti-IFN function exists in SARS-CoV, but not in a SARS-related, bat-borne virus. This PLP-mediated anti-IFN difference was seen in primate, human as well as bat cells, thus independent of the host context. The results of this study revealed that coronavirus PLP confers a variable virulence trait among members of the species SARS-CoV, and that a SARS-CoV lineage with virulent PLPs may have pre-existed in the reservoir before onset of the epidemic.


Assuntos
Cisteína Endopeptidases/fisiologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/enzimologia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/patogenicidade , Proteínas Virais/fisiologia , Sequência de Aminoácidos , Animais , Quirópteros/virologia , Chlorocebus aethiops , Proteases 3C de Coronavírus , Cisteína Endopeptidases/genética , Reservatórios de Doenças/virologia , Células HEK293 , Especificidade de Hospedeiro , Interações Hospedeiro-Patógeno , Humanos , Interferons/antagonistas & inibidores , Filogenia , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/genética , Homologia de Sequência de Aminoácidos , Síndrome Respiratória Aguda Grave/epidemiologia , Síndrome Respiratória Aguda Grave/virologia , Ubiquitina/metabolismo , Células Vero , Proteínas Virais/genética , Virulência/genética , Virulência/fisiologia , Replicação Viral/genética , Replicação Viral/fisiologia , Zoonoses/epidemiologia , Zoonoses/virologia
13.
J Virol ; 92(24)2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30282716

RESUMO

The mosquito-borne Japanese encephalitis virus (JEV) causes severe central nervous system diseases and cycles between Culex mosquitoes and different vertebrates. For JEV and some other flaviviruses, oronasal transmission is described, but the mode of infection is unknown. Using nasal mucosal tissue explants and primary porcine nasal epithelial cells (NEC) at the air-liquid interface (ALI) and macrophages as ex vivo and in vitro models, we determined that the nasal epithelium could represent the route of entry and exit for JEV in pigs. Porcine NEC at the ALI exposed to with JEV resulted in apical and basolateral virus shedding and release of monocyte recruiting chemokines, indicating infection and replication in macrophages. Moreover, macrophages stimulated by alarmins, including interleukin-25, interleukin-33, and thymic stromal lymphopoietin, were more permissive to the JEV infection. Altogether, our data are important to understand the mechanism of non-vector-borne direct transmission of Japanese encephalitis virus in pigs.IMPORTANCE JEV, a main cause of severe viral encephalitis in humans, has a complex ecology composed of a mosquito-waterbird cycle and a cycle involving pigs, which amplifies virus transmission to mosquitoes, leading to increased human cases. JEV can be transmitted between pigs by contact in the absence of arthropod vectors. Moreover, virus or viral RNA is found in oronasal secretions and the nasal epithelium. Using nasal mucosa tissue explants and three-dimensional porcine nasal epithelial cells cultures and macrophages as ex vivo and in vitro models, we determined that the nasal epithelium could be a route of entry as well as exit for the virus. Infection of nasal epithelial cells resulted in apical and basolateral virus shedding and release of monocyte recruiting chemokines and therefore infection and replication in macrophages, which is favored by epithelial-cell-derived cytokines. The results are relevant to understand the mechanism of non-vector-borne direct transmission of JEV.


Assuntos
Vírus da Encefalite Japonesa (Espécie)/fisiologia , Encefalite Japonesa/veterinária , Mucosa Nasal/virologia , Doenças dos Suínos/virologia , Animais , Células Cultivadas , Quimiocinas/metabolismo , Vírus da Encefalite Japonesa (Espécie)/imunologia , Encefalite Japonesa/imunologia , Encefalite Japonesa/virologia , Células Epiteliais/citologia , Mosquitos Vetores/virologia , Mucosa Nasal/citologia , Mucosa Nasal/imunologia , Suínos , Doenças dos Suínos/imunologia , Internalização do Vírus , Replicação Viral , Eliminação de Partículas Virais
14.
Nature ; 495(7440): 251-4, 2013 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-23486063

RESUMO

Most human coronaviruses cause mild upper respiratory tract disease but may be associated with more severe pulmonary disease in immunocompromised individuals. However, SARS coronavirus caused severe lower respiratory disease with nearly 10% mortality and evidence of systemic spread. Recently, another coronavirus (human coronavirus-Erasmus Medical Center (hCoV-EMC)) was identified in patients with severe and sometimes lethal lower respiratory tract infection. Viral genome analysis revealed close relatedness to coronaviruses found in bats. Here we identify dipeptidyl peptidase 4 (DPP4; also known as CD26) as a functional receptor for hCoV-EMC. DPP4 specifically co-purified with the receptor-binding S1 domain of the hCoV-EMC spike protein from lysates of susceptible Huh-7 cells. Antibodies directed against DPP4 inhibited hCoV-EMC infection of primary human bronchial epithelial cells and Huh-7 cells. Expression of human and bat (Pipistrellus pipistrellus) DPP4 in non-susceptible COS-7 cells enabled infection by hCoV-EMC. The use of the evolutionarily conserved DPP4 protein from different species as a functional receptor provides clues about the host range potential of hCoV-EMC. In addition, it will contribute critically to our understanding of the pathogenesis and epidemiology of this emerging human coronavirus, and may facilitate the development of intervention strategies.


Assuntos
Coronavirus/classificação , Coronavirus/metabolismo , Dipeptidil Peptidase 4/metabolismo , Receptores Virais/metabolismo , Animais , Bronquíolos/citologia , Células COS , Quirópteros , Chlorocebus aethiops , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/genética , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/virologia , Dipeptidil Peptidase 4/genética , Células Epiteliais/virologia , Especificidade de Hospedeiro , Humanos , Dados de Sequência Molecular , Receptores Virais/genética
15.
Proc Natl Acad Sci U S A ; 113(35): 9864-9, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27528677

RESUMO

The four human coronaviruses (HCoVs) are globally endemic respiratory pathogens. The Middle East respiratory syndrome (MERS) coronavirus (CoV) is an emerging CoV with a known zoonotic source in dromedary camels. Little is known about the origins of endemic HCoVs. Studying these viruses' evolutionary history could provide important insight into CoV emergence. In tests of MERS-CoV-infected dromedaries, we found viruses related to an HCoV, known as HCoV-229E, in 5.6% of 1,033 animals. Human- and dromedary-derived viruses are each monophyletic, suggesting ecological isolation. One gene of dromedary viruses exists in two versions in camels, full length and deleted, whereas only the deleted version exists in humans. The deletion increased in size over a succession starting from camelid viruses via old human viruses to contemporary human viruses. Live isolates of dromedary 229E viruses were obtained and studied to assess human infection risks. The viruses used the human entry receptor aminopeptidase N and replicated in human hepatoma cells, suggesting a principal ability to cause human infections. However, inefficient replication in several mucosa-derived cell lines and airway epithelial cultures suggested lack of adaptation to the human host. Dromedary viruses were as sensitive to the human type I interferon response as HCoV-229E. Antibodies in human sera neutralized dromedary-derived viruses, suggesting population immunity against dromedary viruses. Although no current epidemic risk seems to emanate from these viruses, evolutionary inference suggests that the endemic human virus HCoV-229E may constitute a descendant of camelid-associated viruses. HCoV-229E evolution provides a scenario for MERS-CoV emergence.


Assuntos
Camelus/virologia , Infecções por Coronavirus/virologia , Coronavirus/fisiologia , Coronavírus da Síndrome Respiratória do Oriente Médio/fisiologia , Animais , Sequência de Bases , Células CACO-2 , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Chlorocebus aethiops , Coronavirus/classificação , Coronavirus/genética , Infecções por Coronavirus/epidemiologia , Doenças Endêmicas , Humanos , Quênia/epidemiologia , Coronavírus da Síndrome Respiratória do Oriente Médio/genética , Filogenia , Arábia Saudita/epidemiologia , Homologia de Sequência do Ácido Nucleico , Células Vero
16.
J Infect Dis ; 215(6): 902-906, 2017 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-28453839

RESUMO

The World Health Organization (WHO) published 2 alcohol-based formulations to be used in healthcare settings and for outbreak-associated infections, but inactivation efficacies of these products have not been determined against (re-)emerging viruses. In this study, we evaluated the virucidal activity of these WHO products in a comparative analysis. Zika virus (ZIKV), Ebola virus (EBOV), severe acute respiratory syndrome coronavirus (SARS-CoV), and Middle East respiratory syndrome coronavirus (MERS-CoV) as (re-)emerging viral pathogens and other enveloped viruses could be efficiently inactivated by both WHO formulations, implicating their use in healthcare systems and viral outbreak situations.


Assuntos
Antissepsia/métodos , Ebolavirus/efeitos dos fármacos , Higiene das Mãos/normas , Coronavírus da Síndrome Respiratória do Oriente Médio/efeitos dos fármacos , Coronavírus Relacionado à Síndrome Respiratória Aguda Grave/efeitos dos fármacos , Zika virus/efeitos dos fármacos , Infecções por Coronavirus/prevenção & controle , Doença pelo Vírus Ebola/prevenção & controle , Humanos , Guias de Prática Clínica como Assunto , Análise de Regressão , República da Coreia , Síndrome Respiratória Aguda Grave/prevenção & controle , Virulência , Organização Mundial da Saúde , Infecção por Zika virus/prevenção & controle
17.
EMBO J ; 32(23): 3055-65, 2013 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-24169568

RESUMO

The IFNL4 gene is a recently discovered type III interferon, which in a significant fraction of the human population harbours a frameshift mutation abolishing the IFNλ4 ORF. The expression of IFNλ4 is correlated with both poor spontaneous clearance of hepatitis C virus (HCV) and poor response to treatment with type I interferon. Here, we show that the IFNL4 gene encodes an active type III interferon, named IFNλ4, which signals through the IFNλR1 and IL-10R2 receptor chains. Recombinant IFNλ4 is antiviral against both HCV and coronaviruses at levels comparable to IFNλ3. However, the secretion of IFNλ4 is impaired compared to that of IFNλ3, and this impairment is not due to a weak signal peptide, which was previously believed. We found that IFNλ4 gets N-linked glycosylated and that this glycosylation is required for secretion. Nevertheless, this glycosylation is not required for activity. Together, these findings result in the paradox that IFNλ4 is strongly antiviral but a disadvantage during HCV infection.


Assuntos
Antivirais/farmacologia , Infecções por Coronaviridae/prevenção & controle , Hepatite C/prevenção & controle , Interleucinas/metabolismo , Receptores de Interferon/metabolismo , Receptores de Interleucina/metabolismo , Sequência de Aminoácidos , Western Blotting , Proliferação de Células , Células Cultivadas , Coronaviridae/patogenicidade , Infecções por Coronaviridae/metabolismo , Infecções por Coronaviridae/virologia , Glicosilação , Hepacivirus/patogenicidade , Hepatite C/metabolismo , Hepatite C/virologia , Humanos , Técnicas Imunoenzimáticas , Interferon gama/metabolismo , Interleucinas/química , Interleucinas/genética , Dados de Sequência Molecular , Conformação Proteica , Sinais Direcionadores de Proteínas/fisiologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Receptores de Interferon/genética , Receptores de Interleucina/genética , Sistema Respiratório/citologia , Sistema Respiratório/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Homologia de Sequência de Aminoácidos , Replicação Viral , Receptor de Interferon gama
18.
PLoS Pathog ; 10(5): e1004166, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24874215

RESUMO

Coronaviruses raise serious concerns as emerging zoonotic viruses without specific antiviral drugs available. Here we screened a collection of 16671 diverse compounds for anti-human coronavirus 229E activity and identified an inhibitor, designated K22, that specifically targets membrane-bound coronaviral RNA synthesis. K22 exerts most potent antiviral activity after virus entry during an early step of the viral life cycle. Specifically, the formation of double membrane vesicles (DMVs), a hallmark of coronavirus replication, was greatly impaired upon K22 treatment accompanied by near-complete inhibition of viral RNA synthesis. K22-resistant viruses contained substitutions in non-structural protein 6 (nsp6), a membrane-spanning integral component of the viral replication complex implicated in DMV formation, corroborating that K22 targets membrane bound viral RNA synthesis. Besides K22 resistance, the nsp6 mutants induced a reduced number of DMVs, displayed decreased specific infectivity, while RNA synthesis was not affected. Importantly, K22 inhibits a broad range of coronaviruses, including Middle East respiratory syndrome coronavirus (MERS-CoV), and efficient inhibition was achieved in primary human epithelia cultures representing the entry port of human coronavirus infection. Collectively, this study proposes an evolutionary conserved step in the life cycle of positive-stranded RNA viruses, the recruitment of cellular membranes for viral replication, as vulnerable and, most importantly, druggable target for antiviral intervention. We expect this mode of action to serve as a paradigm for the development of potent antiviral drugs to combat many animal and human virus infections.


Assuntos
Antivirais/farmacologia , Infecções por Coronavirus/virologia , Coronavirus , RNA Viral/genética , Vírus Sinciciais Respiratórios , Replicação Viral/efeitos dos fármacos , Animais , Linhagem Celular , Membrana Celular/metabolismo , Infecções por Coronavirus/prevenção & controle , Humanos , Internalização do Vírus/efeitos dos fármacos
19.
Virol J ; 13: 24, 2016 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-26852031

RESUMO

Human coronaviruses (HCoVs) are large RNA viruses that infect the human respiratory tract. The emergence of both Severe Acute Respiratory Syndrome and Middle East Respiratory syndrome CoVs as well as the yearly circulation of four common CoVs highlights the importance of elucidating the different mechanisms employed by these viruses to evade the host immune response, determine their tropism and identify antiviral compounds. Various animal models have been established to investigate HCoV infection, including mice and non-human primates. To establish a link between the research conducted in animal models and humans, an organotypic human airway culture system, that recapitulates the human airway epithelium, has been developed. Currently, different cell culture systems are available to recapitulate the human airways, including the Air-Liquid Interface (ALI) human airway epithelium (HAE) model. Tracheobronchial HAE cultures recapitulate the primary entry point of human respiratory viruses while the alveolar model allows for elucidation of mechanisms involved in viral infection and pathogenesis in the alveoli. These organotypic human airway cultures represent a universal platform to study respiratory virus-host interaction by offering more detailed insights compared to cell lines. Additionally, the epidemic potential of this virus family highlights the need for both vaccines and antivirals. No commercial vaccine is available but various effective antivirals have been identified, some with potential for human treatment. These morphological airway cultures are also well suited for the identification of antivirals, evaluation of compound toxicity and viral inhibition.


Assuntos
Infecções por Coronavirus/virologia , Coronavirus/fisiologia , Interações Hospedeiro-Patógeno , Infecções do Sistema Genital/virologia , Animais , Coronavirus/classificação , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/metabolismo , Infecções por Coronavirus/terapia , Modelos Animais de Doenças , Humanos , Imunidade Inata , Receptores Virais/química , Receptores Virais/metabolismo , Infecções do Sistema Genital/imunologia , Infecções do Sistema Genital/metabolismo , Infecções do Sistema Genital/terapia , Mucosa Respiratória/imunologia , Mucosa Respiratória/metabolismo , Mucosa Respiratória/virologia , Tropismo Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA